Advertisement

Past and present aspects of Italian plasma chemistry

  • Mario Capitelli
  • Lucia Daniela PietanzaEmail author
Classical and quantum plasmas
  • 15 Downloads
Part of the following topical collections:
  1. Classical and quantum plasmas: matter under extreme conditions

Abstract

The linking between the initial activities of the Rome–Bari group to their present activities is discussed in different fields of plasma chemical-physics. Several topics are presented including (1) plasma catalysis, (2) the interaction of alumina particles with thermal plasmas and its linking with the thermodynamics and transport properties of plasmas, and (3) non-equilibrium vibrational kinetics coupled with the Boltzmann equation for the electron energy distribution functions (eedf) in aerospace and cold plasma applications. The old activities in plasma catalysis pointed out the importance of atomic species affecting catalytic reactions opening also to the possibility of non-equilibrium vibrational distributions on the chemisorbed ad-atoms. This last aspect is discussed also taking into account recent developments. The study of the interaction of alumina particles with thermal plasmas was rationalized assuming that the step controlling the reaction could be the heat transfer plasma-particle. The model used a simplified fluid dynamic approach with the insertion of accurate values of thermodynamic and transport properties of thermal plasmas. This kind of activity can be considered precursor on the intense work in the field with particular attention on the importance of electronic excited states in affecting thermodynamics and transport of plasmas. Moreover, the plasma-particle interactions can be recovered to a given extent in the modern aspects of hypersonics in the boundary layer of re-entering vehicles as well as in the nozzle flow expansion. In both cases, we underline the existence of vibrational distributions (vdf) far from the Boltzmann behaviour and rates presenting an anti-Arrhenius trend as a function of the inverse of gas temperature. Concerning the non-equilibrium vibrational kinetics, we discuss two case studies. The first one deals with the behaviour of cold nitrogen plasmas pointing out the role of superelastic vibrational and electronic collisions on vdf and eedf. In this case, we discuss also the same case study comparing the results obtained by a complete set of electron molecule cross-sections acting on the whole vibrational ladder with the corresponding ones which consider transitions starting and arriving to the vibrational ground state of the molecule. The last case study concerns the dissociation kinetics of CO2 in cold plasmas, a topic largely studied in the past to emphasize the role of vibrational excitation in CO2 destruction. Recent results obtained using a sophisticated model based on the coupling of Boltzmann equation for the eedf and a state-to-state vibrational kinetics of the asymmetric ladder of CO2 are reported. The interplay between dissociation process by direct electron impact collision and by heavy particle collisions with vibrationally excited CO2 molecules is discussed.

Graphical abstract

Keywords

Plasma catalysis Thermal plasmas Thermodynamics and transport properties of plasmas Non-equilibrium vibrational kinetics Electron Boltzmann equation Cold plasma 

Notes

Acknowledgements

This paper is dedicated to Prof. Ettore Molinari founder of the Italian Plasma Chemistry.

References

  1. Aquilanti V, Bartolomei M, Cappelletti D, Carmona-Novillo E, Pirani F (2001) Dimers of the major components of the atmosphere: realistic potential energy surfaces and quantum mechanical prediction of spectral features. Phys Chem Chem Phys 3:3891–3894CrossRefGoogle Scholar
  2. Aquilanti V, Mundim KC, Elango M, Kleijn S, Kasai T (2010) Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem Phys Lett 498:209–213CrossRefGoogle Scholar
  3. Aquilanti V, Coutinho ND, Carvalho-Silva VH (2017) Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions. Philos Trans R Soc A Math Phys Eng Sci 375:20160201–20160220CrossRefGoogle Scholar
  4. Aquilanti V, Borges EP, Coutinho ND, Mundim KC, Carvalho-Silva VH (2018) From statistical thermodynamics to molecular kinetics: the change, the chance and the choice. Rend Lincei Sci Fis e Nat 28:787–802CrossRefGoogle Scholar
  5. Armenise I, Capitelli M (2005) State-to-state vibrational kinetics in the boundary layer of an entering body in the earth atmosphere: particle distributions and chemical kinetics. Plasma Sources Sci Technol 14:S9–S17CrossRefGoogle Scholar
  6. Armenise I, Kustova E (2018a) Mechanism of coupled vibrational relaxation and dissociation in carbon dioxide. J Phys Chem A 122:5107–5122CrossRefGoogle Scholar
  7. Armenise I, Kustova E (2018b) Effect of asymmetric mode on CO2 state-to-state vibrational-chemical kinetics. J Phys Chem A 122:8709–8721CrossRefGoogle Scholar
  8. Armenise I, Rutigliano M, Cacciatore M, Capitelli M (2011) Hypersonic boundary layers: oxygen recombination on SiO2 starting from ab initio coefficients. J Thermophys Heat Transfer 25(4):627–632CrossRefGoogle Scholar
  9. Askari O (2018) Thermodynamic properties of pure and mixed plasmas over a wide range of temperature and pressure. ASME J Energy Resour Technol 140(3):032202CrossRefGoogle Scholar
  10. Barnes M, Schleicher RG (1975) Computer simulation of RF induction-heated argon plasma discharges at atmospheric pressure for spectrochemical analysis-I. Preliminary investigations. Spectrochim Acta B 30:109–134CrossRefGoogle Scholar
  11. Barreto PRP, HdeO Euclides, Albernaz AF, Aquilanti V, Capitelli M, Grossi G, Lombardi A, Macheret S, Palazzetti F (2017) Gas phase Bouduard reactions involving singlet-singlet and singlet triplet CO vibrationally excited states: implications for the non-equilibrium vibrational kinetics of CO/CO2 plasmas. Eur Phys J D 71:259–269CrossRefGoogle Scholar
  12. Berthelot A, Bogaerts A (2018) Pinpointing energy losses in CO2 plasmas—effects on CO2 conversion. J CO2 Util 24:479–499CrossRefGoogle Scholar
  13. Bogaerts A, Neyts EC (2018) Plasma technology: an emerging technology for energy storage. ACS Energy Lett 3:1013–1027CrossRefGoogle Scholar
  14. Bogaerts A, Berthelot A, Heijkers S, Kolev S, Snoeckx R, Sun S, Trenchev G, Van Laer K, Wang W (2017) CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Sci Technol 26(6):063001CrossRefGoogle Scholar
  15. Borgianni C, Capitelli M, Cramarossa F, Triolo L, Molinari E (1969) Behavior of metal oxides injected into an argon induction plasma. Combust Flame 13:181–194CrossRefGoogle Scholar
  16. Boulos MI, Fauchais P, Pfender E (2017) DC plasma torch design and performance. Handbook of thermal plasmas. Springer, Cham, pp 1–63Google Scholar
  17. Brehmer F, Welzel S, van de Sanden MCM, Engeln R (2014) CO and by-product formation during CO2 reduction in dielectric barrier discharges. J Appl Phys 116:123303CrossRefGoogle Scholar
  18. Bretagne J, Delouya G, Gorse C, Capitelli M, Bacal M (1985) Electron energy distribution functions in electron-beam-sustained discharges: application to magnetic multicusp hydrogen discharges. J Phys D Appl Phys 18:811–825CrossRefGoogle Scholar
  19. Bruno G, Capezzuto P, Madam A (1995) Plasma deposition of amorphous silicon based materials. Academic Press, San DiegoGoogle Scholar
  20. Bruno D, Capitelli M, Esposito F, Longo S, Minelli P (2002) Direct simulation of non-equilibrium kinetics under shock conditions in nitrogen. Chem Phys Lett 360:31–37CrossRefGoogle Scholar
  21. Bruno D, Laricchiuta A, Capitelli M, Catalfamo C (2007) Effect of electronic excited states on transport in magnetized hydrogen plasma. Phys Plasmas 14:022303CrossRefGoogle Scholar
  22. Cacciatore M, Capitelli M, Dilonardo M (1978) A joint vibro-electronic mechanism in the dissociation of molecular hydrogen in nonequilibrium plasmas. Chem Phys 34:193–204CrossRefGoogle Scholar
  23. Cacciatore M, Capitelli M, Gorse C (1982) Non-equilibrium dissociation and ionization of nitrogen in electrical discharges: the role of electronic collisions from vibrationally excited molecules. Chem Phys 66:141–152CrossRefGoogle Scholar
  24. Cacciatore M, Rutigliano M, Billing GD (1999) Eley-Rideal and Langmuir-Hinshelwood recombination coefficients for oxygen on silica surfaces. J Thermophys Heat Transfer 13(2):195–203CrossRefGoogle Scholar
  25. Capezzuto P, Cramarossa F, d’Agostino R, Molinari E (1976) Contribution of vibrational excitation to the rate of carbon dioxide dissociation in electrical discharges. J Phys Chem 80:882–888CrossRefGoogle Scholar
  26. Capitelli M (1977) Transport properties of partially ionized gases. Journal de Physique Colloque 38(C3):227–237Google Scholar
  27. Capitelli M, Molinari E (1970) Problems of determination of high temperature thermodynamic properties of rare gases with application to mixtures. J Plasma Phys 4:335–355CrossRefGoogle Scholar
  28. Capitelli M, Molinari E (1980) Kinetics of dissociation processes in plasmas in the low and intermediate pressure range. Top Curr Chem 90:59–109CrossRefGoogle Scholar
  29. Capitelli M, Cramarossa F, Triolo L, Molinari E (1970) Decomposition of alumina particles injected into argon-nitrogen induction plasmas of 1 atmosphere. Combust Flame 15:23–31CrossRefGoogle Scholar
  30. Capitelli M, Ficocelli V, Molinari E (1971) Electronic excitation and thermodynamic properties of high temperature gases. Zeitschrift für Naturforschung A (Astrophysik, Physik und Physikalische Chemie) 26a:672–683Google Scholar
  31. Capitelli M, Dilonardo M, Molinari E (1977) A theoretical calculation of dissociation rates of molecular hydrogen in electrical discharges. Chem Phys 20:417–429CrossRefGoogle Scholar
  32. Capitelli M, Celiberto R, Gorse C, Winkler R, Wilhelm J (1988) Electron energy distribution functions in radio-frequency collision dominated nitrogen discharges. J Phys D Appl Phys 21:691–699CrossRefGoogle Scholar
  33. Capitelli M, Armenise I, Gorse C (1997) State-to-state approach in the kinetics of air components under re-entry conditions. J Thermophys Heat Transfer 11:570–578CrossRefGoogle Scholar
  34. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000a) Plasma kinetics in atmospheric gases, vol 31. Springer series on atomic, optical and plasma physics. Springer, BerlinGoogle Scholar
  35. Capitelli M, Capitelli F, Eletskii A (2000b) Non-equilibrium and equilibrium problems in laser-induced plasmas. Spectrochim Acta B 55B:559–574CrossRefGoogle Scholar
  36. Capitelli M, Celiberto R, Gorse C, Laricchiuta A, Minelli P, Pagano D (2002) Electronically excited states and transport properties of thermal plasmas: the reactive thermal conductivity. Phys Rev E (Stat Nonlinear Soft Matter Phys) 66:016403CrossRefGoogle Scholar
  37. Capitelli M, Colonna G, Esposito F (2004a) On the coupling of vibrational relaxation with the dissociation-recombination kinetics: from dynamics to aerospace applications. J Phys Chem A 108:8930–8934CrossRefGoogle Scholar
  38. Capitelli M, Celiberto R, Gorse C, Laricchiuta A, Pagano D, Traversa P (2004b) Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states. Phys Rev E 69(2):026412CrossRefGoogle Scholar
  39. Capitelli M, Cacciatore M, Celiberto R, DePascale O, Diomede P, Esposito F, Gicquel A, Gorse C, Hassouni K, Laricchiuta A, Longo S, Pagano D, Rutigliano M (2006) Vibrational kinetics, electron dynamics and elementary processes in H2 and D2 plasmas for negative ion production: modelling aspects. Nucl Fusion 46(6):S260–S274CrossRefGoogle Scholar
  40. Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chem Phys 338:62–68CrossRefGoogle Scholar
  41. Capitelli M, Colonna G, De Pascale O, Gorse C, Hassouni K, Longo S (2009) Electron energy distribution functions and second kind collisions. Plasma Sources Sci Technol 18(1):014014CrossRefGoogle Scholar
  42. Capitelli M, Bruno D, Colonna G, D’Ammando G, Esposito F, Laricchiuta A, Pietanza LD (2011a) Molecular physics and kinetics of high-temperature planetary atmospheres. Rend Lincei 22:201–210CrossRefGoogle Scholar
  43. Capitelli M, Colonna G, D’Angola A (2011b) Fundamental aspects of plasma chemical physics: thermodynamics, vol 66. Springer series on atomic optical and plasma physics. Springer, New YorkGoogle Scholar
  44. Capitelli M, Bruno D, Laricchiuta A (2013a) Fundamental aspects of plasma chemical physics: transport, vol 74. Springer, New YorkGoogle Scholar
  45. Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2013b) The role of electron scattering with vibrationally excited nitrogen molecules on non-equilibrium plasma kinetics. Phys Plasmas 20:101609CrossRefGoogle Scholar
  46. Capitelli M, Celiberto R, Colonna G, Esposito F, Gorse C, Hassouni K, Laricchiuta A, Longo S (2016) Fundamental aspects of plasma chemical physics: kinetics, vol 85. Springer series on atomic optical and plasma physics. Springer, New YorkGoogle Scholar
  47. Capitelli M, Colonna G, D’Ammando G, Hassouni K, Laricchiuta A, Pietanza LD (2017a) Coupling of plasma chemistry, vibrational kinetics, collisional-radiative models and electron energy distribution function under non-equilibrium conditions. Plasma Process Polym 14:1600109CrossRefGoogle Scholar
  48. Capitelli M, Colonna G, D’Ammando G, Pietanza LD (2017b) Self-consistent time dependent vibrational and free electron kinetics for CO2 dissociation and ionization in cold plasmas. Plasma Sources Sci Technol 26:055009CrossRefGoogle Scholar
  49. Celiberto R, Armenise I, Cacciatore M, Capitelli M, Esposito F, Gamallo P, Janev RK, Laganà A, Laporta V, Laricchiuta A, Lombardi A, Rutigliano M, Sayós R, Tennyson J, Wadehra JM (2016) Atomic and molecular data for spacecraft re-entry plasmas. Plasma Sources Sci Technol 25:033004CrossRefGoogle Scholar
  50. Colonna G, Capitelli M (1996) Electron and vibrational kinetics in the boundary layer of hypersonic flow. J Thermophys Heat Transfer 10:406–412CrossRefGoogle Scholar
  51. Colonna G, Capitelli M (2001a) The influence of atomic and molecular metastable states in high-enthalpy nozzle expansion nitrogen flows. J Phys D (Appl Phys) 34:1812–1818CrossRefGoogle Scholar
  52. Colonna G, Capitelli M (2001b) Self-consistent model of chemical, vibrational, electron kinetics in nozzle expansion. J Thermophys Heat Transfer 15:308–316CrossRefGoogle Scholar
  53. d’Agostino R (1990) Plasma deposition, treatment, and etching of polymers. Academic Press, LondonGoogle Scholar
  54. D’Ammando G, Capitelli M, Esposito F, Laricchiuta A, Pietanza LD, Colonna G (2014) The role of radiative reabsorption on the electron energy distribution functions in H2/He expansion through a tapered nozzle. Phys Plasmas 21:093508CrossRefGoogle Scholar
  55. Dilonardo M, Capitelli M, Gorse C, Wilhelm J, Winkler R (1988) The impact of different CO admixtures on the electron kinetics in collision dominated RF He/CO bulk plasmas. Contrib Plasma Phys 28:543–555CrossRefGoogle Scholar
  56. Diomede P, Capitelli M, Longo S (2005) Effect of discharge voltage on capacitively coupled parallel plate rf hydrogen plasmas. Plasma Sources Sci Technol 14(3):459–466CrossRefGoogle Scholar
  57. Diomede P, van de Sanden MCM, Longo S (2018) Vibrational kinetics in plasma as a functional problem: a flux-matching approach. J Phys Chem A 122(39):7918–7923CrossRefGoogle Scholar
  58. Eletskii AV, Capitelli M, Celiberto R, Laricchiuta A (2004) Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms. Phys Rev A (At Mol Opt Phys) 69:42718CrossRefGoogle Scholar
  59. Esposito F, Armenise I, Capitelli M (2006) N–N2 state-to-state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 331:1–8CrossRefGoogle Scholar
  60. Esposito F, Armenise I, Capitta G, Capitelli M (2008) O-O2 state-to-state vibrational relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 351(1–3):91–98CrossRefGoogle Scholar
  61. Fridman A (2009) Plasma chemistry. University Press, CambridgeGoogle Scholar
  62. Fubiani G, Garrigues L, Hagelaar G, Kohen N, Boeuf JP (2017) Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source. New J Phys 19:015002CrossRefGoogle Scholar
  63. Giordano D, Capitelli M (2001) Nonuniqueness of the two-temperature Saha equation and related considerations. Phys Rev E 65:016401CrossRefGoogle Scholar
  64. Gorse C, Capitelli M, Ricard A (1985) On the coupling of electron and vibrational energy distributions in H2, N2 and CO post discharges. J Chem Phys 82:1900–1906CrossRefGoogle Scholar
  65. Gorse C, Cacciatore M, Capitelli M, De Benedictis S, Dilecce G (1988) Electron energy distribution functions under N2 discharge and post-discharge conditions: a self-consistent approach. Chem Phys 119:63–70CrossRefGoogle Scholar
  66. Gorse C, Capitelli M, Dipace A (1990) Time-dependent Boltzmann equation in a self-sustained discharge XeCl laser: influence of electron-electron and superelastic collisions. J Appl Phys 67:1118–1120CrossRefGoogle Scholar
  67. Gorse C, Capitelli M, Longo S, Estocq E, Bretagne J (1991) Non-equilibrium vibrational, dissociation and dissociative attachment kinetics of HCl under high electron density conditions typical of XeCl laser discharges. J Phys D Appl Phys 24:1947–1953CrossRefGoogle Scholar
  68. Guo X, Murphy AB, Li X (2017) Thermodynamic properties and transport coefficients of two temperature helium thermal plasmas. J Phys D Appl Phys 50(12):125202CrossRefGoogle Scholar
  69. Hassouni K, Gicquel A, Capitelli M (1998) The role of dissociative attachment from Rydberg states in enhancing H concentration in moderate- and low-pressure H2 plasma sources. Chem Phys Lett 290:502–508CrossRefGoogle Scholar
  70. Hassouni K, Gicquel A, Capitelli M, Loureiro J (1999) Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond MPACVD processes. Plasma Sources Sci Technol 8:494–512CrossRefGoogle Scholar
  71. Hassouni K, Lombardi G, Duten X, Haagelar G, Silva F, Gicquel A, Grotjohn TA, Capitelli M, Ropcke J (2006) Overview of the different aspects in modelling moderate pressure H2 and H2/CH4 microwave discharges. Plasma Sources Sci Technol 15:117–125CrossRefGoogle Scholar
  72. Istomin VA, Kustova EV (2017) State-specific transport properties of partially ionized flows of electronically excited atomic gases. Chem Phys 584–585:125–139CrossRefGoogle Scholar
  73. Juurlink LBF, McCabe PR, Smith RR, DiCologero CL, Utz AL (1999) Eigenstate-resolved studies of gas-surface reactivity: CH43) dissociation on Ni(100). Phys Rev Lett 83:868–871CrossRefGoogle Scholar
  74. Juurlink LBF, Smith RR, Killelea DR, Utz AL (2005) Comparative study of C–H stretch and bend vibrations in methane activation on Ni(100) and Ni(111). Phys Rev Lett 94:208303CrossRefGoogle Scholar
  75. Kolesnikov A (1995) The aerothermodynamic simulation in sub- and supersonic high-enthalpy jets: experiment and theory. In: Proc. 2nd european symposium on aerothermodynamics for space vehicles. ESA SP-367:583–590Google Scholar
  76. Kosarim AV, Smirnov BM, Capitelli M, Celiberto R, Laricchiuta A (2006) Resonant charge exchange involving electronically excited states of nitrogen atoms and ions. Phys Rev A 74(2):062707CrossRefGoogle Scholar
  77. Kustova EV, Nagnibeda EA, Alexandrova TYU, Chikhaoui A (2003) Non-equilibrium dissociation rates in expanding flows. Chem Phys Lett 377:663–671CrossRefGoogle Scholar
  78. Laganà A, Garcia E, Ciccarelli L (1987) Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms. J Phys Chem 91:312–314CrossRefGoogle Scholar
  79. Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F (2009a) High temperature Mars atmosphere. Part I: transport cross sections. Eur Phys J D 54(3):607–612CrossRefGoogle Scholar
  80. Laricchiuta A, Pirani F, Colonna G, Bruno D, Gorse C, Celiberto R, Capitelli M (2009b) Collision integrals for interactions involving atoms in electronically excited states. J Phys Chem A 113(52):15250–15256CrossRefGoogle Scholar
  81. Laricchiuta A, Pietanza LD, Capitelli M, Colonna G (2018) Electron-CO excitation and ionization cross sections for plasma modeling. Plasma Phys Control Fusion 61:014009CrossRefGoogle Scholar
  82. Lombardi A, Faginas-Lago N, Pacifici L, Constantini A (2013) Modeling of energy transfer from vibrationally excited CO2 molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J Phys Chem A 117(45):11430–11440CrossRefGoogle Scholar
  83. Longo S, Gorse C, Capitelli M (1991) Open problems in the XeCl laser physics. IEEE T Plasma Sci 19:379–386CrossRefGoogle Scholar
  84. Longo S, Hassouni K, Iasillo D, Capitelli M (1997) Coupled electron and molecular vibrational kinetics in a 1D particle-in-cell model of a low pressure, high frequency electric discharge in nitrogen. J Phys III 7:707–718Google Scholar
  85. Macdonald RL, Jaffe RL, Schwenke DW, Panesi M (2018) Construction of a coarse grain quasiclassical trajectory method I theory and application. J Chem Phys 148:054309CrossRefGoogle Scholar
  86. Molinari E, Tomellini M (2000) Non-equilibrium vibrational kinetics in adlayers: outline of an alternative approach to catalytic processes. Chem Phys 253:367–388CrossRefGoogle Scholar
  87. Molinari E, Tomellini M (2002) Vibrational non equilibrium at catalytic surfaces. Catal Lett 83:71–78CrossRefGoogle Scholar
  88. Molinari E, Tomellini M (2003) Surface reactions in the presence of gas atoms: role of the vibrational excitation of the adlayer. In: 16th international symposium on plasma chemistry (ISPC-16), Taormina (Italy)Google Scholar
  89. Molinari E, Cramarossa F, Pullo A, Triolo L (1965a) The influence of gaseous oxygen atoms on the catalytic oxidation of ammonia on Pt–Rh. J Catal 4:341–353CrossRefGoogle Scholar
  90. Molinari E, Cramarossa F, Capitelli M, Pullo A (1965b) Catalytic oxidation of ammonia on cobalt oxide in the presence of oxygen atoms. Atti Accademia Nazionale dei Lincei, Rend, Classe Sci Fis, Mat Nat 38:531–539Google Scholar
  91. Molinari E, Cramarossa F, Capitelli M, Mercanti A (1966) Catalytic decomposition of ammonia on tungsten in the presence of hydrogen atoms. Rice Sci 36:109–113Google Scholar
  92. Murphy AB, Colombo V, Mostaghini J (2013) Arc welding plasma cutting and plasma spraying. J Phys D Appl Phys 46(22):220301CrossRefGoogle Scholar
  93. Nagnibeda E, Kustova E (2009) Non-equilibrium reacting gas flows: kinetic theory of transport and relaxation processes. Springer, BerlinCrossRefGoogle Scholar
  94. Nozaki T, Okazaki K (2013) Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications. Catal Today 211:29–38CrossRefGoogle Scholar
  95. Pietanza LD, Colonna G, D’Ammando G, Laricchiuta A, Capitelli M (2015) Vibrational excitation and dissociation mechanisms of CO2 under non-equilibrium discharge and post-discharge conditions. Plasma Sources Sci Technol 24:042002 (Fast track communications) CrossRefGoogle Scholar
  96. Pietanza LD, Colonna G, D’Ammando G, Laricchiuta A, Capitelli M (2016) Non equilibrium vibrational assisted dissociation and ionization mechanisms in cold CO2 plasmas. Chem Phys 468:44–52CrossRefGoogle Scholar
  97. Pietanza LD, Colonna G, D’Ammando G, Capitelli M (2017) Time-dependent coupling of electron energy distribution function, vibrational kinetics of the asymmetric mode of CO2 and dissociation, ionization and electronic excitation kinetics under discharge and post-discharge conditions. Plasma Phys Control Fusion 59:014035CrossRefGoogle Scholar
  98. Pietanza LD, Colonna G, Capitelli M (2018a) Non-equilibrium electron and vibrational distributions under nanosecond repetitively pulsed CO discharges and afterglows: I. Optically thick plasmas. Plasma Sources Sci Technol 27:095004CrossRefGoogle Scholar
  99. Pietanza LD, Colonna G, Laricchiuta A, Capitelli M (2018b) Non-equilibrium electron and vibrational distributions under nanosecond repetitively pulsed CO discharges and afterglows: II the role of radiative and quenching processes. Plasma Sources Sci Technol 27:095003CrossRefGoogle Scholar
  100. Pirani F, Maciel GS, Cappelletti D, Aquilanti V (2006) Experimental benchmarks and phenomenology of interatomic forces: open-shell and electronic anisotropy effects. Int Rev Phys Chem 25:165–199CrossRefGoogle Scholar
  101. Pirani F, Brizi S, Roncaratti LF, Casavecchia P, Cappelletti D, Vecchiocattivi F (2008) Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys Chem Chem Phys 10:5489–5503CrossRefGoogle Scholar
  102. Pirani F, Capitelli M, Colonna G, Laricchiuta A (2019) Transport cross sections from accurate intermolecular forces. Rend Lincei.  https://doi.org/10.1007/s12210-019-00773-0
  103. Rydalevskaya MA (2017) Simplified method for calculation of equilibrium plasma composition. Phys A 476:49–57CrossRefGoogle Scholar
  104. Silva T, Grofulovic M, Klarenaar BLM, Morillo-Candas AS, Guaitella O, Engeln R, Pintassilgo CD, Guerra V (2018) Kinetic study of low-temperature CO2 plasmas under non-equilibrium conditions. I. Relaxation of vibrational energy. Plasma Sources Sci Technol 27:015019CrossRefGoogle Scholar
  105. Singh G (2017) Influence of pressure derivative of partition function on the isentropic coefficient and sound speed for NLTE hydrogen plasma. Int J Pure Appl Phys 13:142–145Google Scholar
  106. Singh K, Singh G, Sharma R (2010) Role of electronic excitation on thermodynamic and transport properties of argon and argon hydrogen plasmas. Phys Plasmas 17:072309CrossRefGoogle Scholar
  107. Taccogna F, Schneider R, Longo S, Capitelli M (2008) Modeling of a negative ion source II. Plasma-gas coupling in the extraction region. Phys Plasmas 15:103502CrossRefGoogle Scholar
  108. Taccogna F, Minelli P, Longo S (2013) Three-dimensional structure of the extraction region of a hybrid negative ion source. Plasma Sources Sci Technol 22:045019CrossRefGoogle Scholar
  109. Valentini P, Schwartzentruber E, Bender JD, Nompelis I, Candler GV (2015) Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface. Phys Fluids 27:086102CrossRefGoogle Scholar
  110. Whitehead JC (2016) Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns. J Phys D Appl Phys 49:243001CrossRefGoogle Scholar
  111. Zhdanov VM, Stepanenko AA (2016) Kinetic theory of transport processes in partially ionized reactive plasma, II: electron transport properties. Phys A 461:310–324CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.CNR NANOTEC, PLasMI LabBariItaly

Personalised recommendations