Advertisement

Groundwater response to local climate variability: hydrogeological and isotopic evidences from the Mt. Amiata volcanic aquifer (Tuscany, central Italy)

  • Francesco MagiEmail author
  • Marco Doveri
  • Matia Menichini
  • Angelo Minissale
  • Orlando Vaselli
Foreseeing Groundwater Resources
  • 19 Downloads
Part of the following topical collections:
  1. Foreseeing Groundwater Resources

Abstract

Groundwater bodies constitute important water supplies as they are considered to be the safest and most reliable sources for drinking water. Although they commonly show complex dynamics, they may provide information on climate variability, being sensitive at both local and global climate conditions. Currently, the shallow aquifer hosted in the Mt. Amiata volcanics represents the most important freshwater reservoir of southern Tuscany (central Italy). Nevertheless, such a groundwater system is still poorly constrained, despite the hydrogeological and geochemical investigations carried out in the last decades. In this work literature and new hydrogeological and water stable isotopic data from both rainfall and groundwater are reviewed with the aim to better understand how the Mt. Amiata aquifer responds to the meteoric recharge and evaluate the impact of climate variability on this significant groundwater body. Isotopically, a good agreement between the rainfall and the groundwater system was observed, suggesting that the aquifer can be used as a proxy for local climate changes.

Keywords

Central Italy Mt. Amiata aquifer Hydrology Hydrogeology Stable water isotopes Water management 

Notes

Acknowledgements

This work was partly financially supported by Acquedotto del Fiora Ltd. (Resp. OV) and the administrative and technical personnel is gratefully acknowledged for their help during the various sampling surveys carried out in the Mt. Amiata region. Many thanks to F. Capecchiacci, J. Cabassi, L. Giannini, and B. Nisi for their help in the field. M. Mussi, E. Calvi and M. Catania (CNR-IGG, Pisa) are thanked for performing the stable isotope analysis.

References

  1. Baldi P, Bellani S, Ceccarelli A, Fiordelisi A, Squarci P, Taffi L (1994) Correlazioni tra le anomalie termiche ed altri elementi geofisici e strutturali della Toscana meridionale. Stud Geol Camer 1:139–149Google Scholar
  2. Baoxiang Z, Fanhai M (2011) Delineation methods and application of groundwater source protection zone. In: Water resource and environmental protection (ISWREP), 2011 international symposium on volume: 1 (IEEE Conference Publications): pp 66–69.  https://doi.org/10.1109/iswrep.2011.5892945
  3. Barazzuoli et al. (2008) Studio geostrutturale, idrogeologico e geochimico ambientale dell’area amiatina, (2008). Siena, (In Italian)Google Scholar
  4. Barazzuoli P, Bosco G, Nante N, Rappuoli D, Salleolini M (1994) The aquifer of mount Amiata (Southern Tuscany): evaluation of the perennial yield and its quality. Mem Soc Geol Italy 48:825–832Google Scholar
  5. Barazzuoli P, Rappuoli D, Salleolini M (1995) Identification and comparison of perennial yield estimation models using Mt. Amiata aquifer (southern Tuscany, Italy) as an example. Environ Geol 25:86–99CrossRefGoogle Scholar
  6. Barelli A, Ceccarelli A, Dini I, Fiordelisi A, Giorgi N, Lovari F, Romagnoli P (2010) A review of the Mt. Amiata geothermal system (Italy). In: Proceedings world geothermal congress (2010:1–4)Google Scholar
  7. Batini F, Brogi A, Lazzarotto A, Liotta D, Pandeli E (2003) Geological features of Larderello-Travale and Mt Amiata geothermal areas (southern Tuscany Italy). Episodes 26:239–244Google Scholar
  8. Bertani R (2016) Geothermal power generation in the world 2010–2014 update report. Geothermics 60:31–43CrossRefGoogle Scholar
  9. Borgia A, Mazzoldi A, Brunori CA, Allocca C, Delcroix C, Micheli L, Vercellino A, Grieco G (2014) Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia. J Volcanol Geoth Res 284:16–31CrossRefGoogle Scholar
  10. Bossio A, Costantini A, Lazzarotto A, Liotta D, Mazzanti R, Mazzei R, Salvatorini G, Sandrelli F (1993) Rassegna delle conoscenze sulla stratigrafia del neoautoctono toscano. Mem Soc Geol Italy 49:17–98Google Scholar
  11. Brogi Andrea and Lorenzo Fabbrini (2009) Extensional and strike-slip tectonics across the Monte Amiata-Monte Cetona transect (Northern Apennines, Italy) and seismotectonic implications. Tectonophysics 476(1–2):195–209Google Scholar
  12. Brogi A, Liotta D, Meccheri M, Fabbrini L (2010) Transtensional shear zones controlling volcanic eruptions: the Middle Pleistocene Mt Amiata volcano (inner Northern Apennines, Italy). Terra Nova 22:137–146CrossRefGoogle Scholar
  13. Brogi A, Fabbrini L, Liotta D (2011) Sb-Hg ore deposit distribution controlled by brittle structures: the case of the Selvena minig distritc (Monte Amiata, Tuscany, Italy). Ore Geol Rev 41:35–48CrossRefGoogle Scholar
  14. Burgassi PD, Ceron P, Ferrara GC, Sestini G, Toro B (1970) Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy). Geothermics 2:443–449CrossRefGoogle Scholar
  15. Calamai A, Cataldi R, Squarci P, Taffi L (1970) Geology, Geophysics ah Hydrogeology of the Monte Amiata Geothermal Fields, Geothermics, Special Issue 1, maps and commentsGoogle Scholar
  16. Caparrini F, Castelli F, Ercolani G (2011) Adattameno ed implementazione del modello idrologico MOBIDIC per il bilancio dei bacini idrografici e dell’acquifero del Monte Amiata, Relazione finale per Regione Toscana, pp 78 (In Italian)Google Scholar
  17. Celico P, Gaudenzi E, Saraca G (1988) Lineamenti idrogeologici del bacino del Fiora (Toscana-Lazio). Boll Serv Geol Italy 107:73–130Google Scholar
  18. Chiodini G, Comodi P, Giaquinto S, Mattioli B, Zanzari AR (1988) Cold Groundwater temperatures and conductive heat flow in the Mt. Amiata geothermal area, Tuscany. Italy Geother 17:645–656CrossRefGoogle Scholar
  19. Clark I (2015) Groundwater geochemistry and isotopes. CRC Press – Taylor and Francis Group, London, 438 ppGoogle Scholar
  20. Coleman ML, Shepherd TJ, Rouse JE, Moore GR (1982) Reduction water with zinc for hydrogen isotope analysis. Anal Chem. 54:993–995CrossRefGoogle Scholar
  21. Conticelli S, Boari E, Burlamacchi L, Cifelli F, Moscardi F, Laurenzi MA, Ferrari Pedraglio L, Francalanci L, Benvenuti MG, Braschi E et al. (2015) Geochemistry and Sr-Nd-Pb isotopes of Monte Amiata Volcano, Central Italy: Evidence for magma mixing between high-K calc-alkaline and leucititic mantle-derived magmas. In: Conticelli S, Marroni M, Moratti G, (eds) The geology of the Monte Amiata. Italian J. Geosci. 134(2):266–290.  https://doi.org/10.3301/ijg.2015.12
  22. Conticelli S, Marroni M, Moratti G, (eds) (2015) The geology of the Monte Amiata. Italian J Geosci 134 (2), Roma. ISSN 2038-1719Google Scholar
  23. Deiana M, Mussi M, Ronchetti F (2017) Discharge and environmental isotope behaviours of adjacent fractured and porous aquifers. Environ Earth Sci. 76(17):595.  https://doi.org/10.1007/s12665-017-6897-x
  24. Dini A, Gianelli G, Puxeddu M, Ruggieri G (2005) Origin and evolution of Pliocene-Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 81(1–4):1–31CrossRefGoogle Scholar
  25. Doveri M (2014) Mussi M (2014) Water isotopes as environmental tracers for conceptual understanding of groundwater flow: an application for fractured aquifer systems in the “Scansano-Magliano in Toscana” Area (Southern Tuscany, Italy). Water 6:2255–2277CrossRefGoogle Scholar
  26. Doveri M, Menichini M (2017b) Aspetti idrogeologici delle vulcaniti del Monte Amiata. In: Principe C., Lavorini G., Vezzoli L (eds.) “Il Vulcano di Monte Amiata”, ESA Ed., Firenze, pp. 255–265Google Scholar
  27. Doveri M, Nisi B, Cerrina Feroni A, Ellero A, Menichini M, Lelli M, Masetti G, Da Prato S, Principe C, Raco B (2012) Geological, hydrodynamic and geochemical features of the volcanic aquifer of Mt. Amiata (Tuscany, central Italy): an overview. Acta Vulcanologica vol. 23(1–2), 2011/24 (1–2), 2012: 51–72Google Scholar
  28. Doveri M, Menichini M, Cerrina Feroni A (2013) Stable water isotope as fundamental tool in karst aquifer studies: some results from isotopic applications in the Apuan Alps carbonatic complexes (NW Tuscany). Italian Eng Geol Environ 1:25–42Google Scholar
  29. Doveri M, Menichini M, Scozzari A (2016) Protection of groundwater resources: worldwide regulations, scientific approaches and case study. In: Scozzari A, Dotsika E (eds): “Threats to the quality of groundwater resources: prevention and control”—The handbook of environmental chemistry, Springer-Verlag, Berlin Heidelberg, 40:13–30Google Scholar
  30. Doveri M, Menichini M, Provenzale A, Scozzari A (2017a) Effects of climate change on groundwater: observed and forecasted trends on Italian systems. Geophysical Research Abstracts, 19th EGU Conference, Vienna. 2017EGUGA. 1914440DGoogle Scholar
  31. Doveri M, Menichini M, Provenzale A, Scozzari A (2017c) Groundwater response to climate changes: examples of observed and modeled trends on Tuscany aquifers (central Italy). In: Atti del Convegno “XVII Giornata Mondiale dell’Acqua- “Strategie di adattamento alla domanda e alla disponibilità di risorse idriche”, Accademia dei Lincei, Roma (in press)Google Scholar
  32. Epstein and Mayeda (1953) Variation of the 18O/16O ratio in natural waters. Geoch Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  33. Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl Geochem 24:860–875CrossRefGoogle Scholar
  34. Gat JR (1980) The Isotopes of Hydrogen and Oxygen in Precipitation. In: Fritz P and Fontes J Ch—Handbook of Environmental Isotope Geochemistry, Volume 1, The terrestrial Environment A, Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1980, Chapter 1, pp 21–44Google Scholar
  35. Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75(15):3039–3048CrossRefGoogle Scholar
  36. Gianelli G, Puxeddu M, Batini F, Bertini G, Dini I, Pandeli E, Nicolich R (1988) Geological model of a young volcano-plutonic system: the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics 1(5–6):719–734CrossRefGoogle Scholar
  37. Giustini F, Brilli M, Patera A (2016) Mapping oxygen stable isotopes of precipitation in Italy. J Hydrol (Regional Studies) 8:162–181CrossRefGoogle Scholar
  38. Hiscock KM (2011) Groundwater in the 21st century—meeting the challenges. In: Anthony J, Jones A (eds) Sustaining groundwater resources: a critical element in the global water crisis, in International Year of Planet Earth. Springer, New York, pp 207–225CrossRefGoogle Scholar
  39. La Felice S, Abebe Adhana T, Principe C, Vezzoli L (2017) Caratteristiche petro-chimiche delle vulcaniti di Monte Amiata in relazione alla stratigrafia. In: Principe C., Lavorini G., Vezzoli L (eds.) Il Vulcano di Monte Amiata, Esa Ed., Firenze, pp. 145–176Google Scholar
  40. Laurenzi MA and La Felice S (2017) Nuovi dati geocronologici sulle vulcaniti incontrate dal pozzo David Lazzaretti. In: Principe C., Lavorini G., Vezzoli L (eds) Il Vulcano di Monte Amiata”, Esa Ed. Firenze, 2017, pp 233–244Google Scholar
  41. Laurenzi MA, Braschi E, Casalini M, Conticelli S (2015) New 40Ar-39Ar dating and revision of the geochronology of the Monte Amiata Volcano, Central Italy. In: Conticelli S, Marroni M, Moratti G, (eds) The geology of the Monte Amiata. Italian J. Geosci. Vol. 134 (2): 255–265.  https://doi.org/10.3301/ijg.2015.11
  42. Liotta D, Salvatorini GF (1994) – Evoluzione sedimentaria e tettonica della parte centro-meridionale del bacino pliocenico di Radicofani. Stud Geol Camerti 1:65–77Google Scholar
  43. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270(1–2):75–88Google Scholar
  44. MAC-GEO Project, 2010. “Indagine geochimica ed isotopica delle acque termo- ed oligo-minerali dell’area amiatina, Regione Toscana. (In Italian)Google Scholar
  45. Magi F, Doveri M, Cabassi J, Calvi E, Capecchiacci F, Giannini L, Lelli M, Menichini M, Nisi B, Minissale A, Provenzale A, Scozzari A, Tassi F, Raco B, Trifirò S, Vaselli O (2018) Groundwater response to local climate variability: isotopic and hydrogeological evidences from the shallow Mt. Amiata aquifer (central Italy). In: Atti del Convegno “XVIII Giornata Mondiale dell’Acqua- La previsione idrogeologica sulla risorsa acqua”, Accademia dei Lincei, Roma (in press)Google Scholar
  46. Manzella A (2006). Convenzione tra la Regione Toscana e L’Istituto di Geoscienze e Georisorse del cnr per la realizzazione della campagna geofisica triennale tramite elettromagnetismo relativa all’acquifero dell’edificio vulcanico del Monte Amiata, relazione finale, internal report, 56 ppGoogle Scholar
  47. Manzella A, Mackie R, Fiordelisi A (1999) A MT survey in the Amiata volcanic area: a combined methodology for defining shallow and deep structures. Phys Chem Earth Part A 24(9):837–840CrossRefGoogle Scholar
  48. Marroni M, Pandeli E, Pandolfi L, Catanzariti R (2015b). Updated picture of the Ligurian and sub-Ligurian units in the Mt. Amiata area (Tuscany, Italy): elements for their correlation in the framework of the Northern Apennines. In: Conticelli S, Marroni M, Moratti G, (eds) The geology of the Monte Amiata. 134 (2): 200–218.  https://doi.org/10.3301/ijg.2014.47
  49. Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth-Sci Rev 66(1–2):89–141CrossRefGoogle Scholar
  50. Minissale A, Vaselli O (2011) Karst springs as “natural” pluviometers: constraints on the isotopic composition of rainfall in the Apennines of central Italy. Appl Geochem 26(5):838–852CrossRefGoogle Scholar
  51. Minissale A, Evans W, Magro G, Vaselli O (1997a) Multiple source components in gas manifestations from north–central Italy. Chem Geol 142:175–192CrossRefGoogle Scholar
  52. Minissale A, Magro G, Vaselli O, Verrucchi C, Perticone I (1997b) Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). J Volcanol Geoth Res 79:223–251CrossRefGoogle Scholar
  53. Mook WG (2000). Environmental isotopes in hydrological cycle. Principles and applications. IHP-V. Tech Document HydrolGoogle Scholar
  54. Nisi B, Vaselli O, Tassi F, de Elio J, Ortega M, Caballero J, Rappuoli D, Mazadiego LF (2014) Origin of the gases released from acqua passante and ermeta wells (Mt Amiata, central Italy) and possible environmental implications for their closure. Ann Geophys 57(4):0438.  https://doi.org/10.4401/ag-6584 Google Scholar
  55. Pandeli E, Bertini G, Castellucci P, Morelli M, Monechi S (2005) The sub-Ligurianand Ligurian units of the Mt. Amiata geothermal region (south-eastern Tuscany): new stratigraphic and tectonic data and insights into their relationships with the Tuscan Nappe. Boll Soc Geol Italy 3:55–71Google Scholar
  56. Pandeli E, Bertini G, Orti L (2017) Inquadramento geologico dell’area della Monte Amiata. In: Principe C, Lavorini G, Vezzoli L (Eds) Il Vulcano di Monte Amiata. Esa Ed. Firenze, 2017, pp 21–54Google Scholar
  57. Pierotti L, Cortecci G, Gherardi F (2016) Hydrothermal gases in a shallow aquifer at Mt. Amiata, Italy: insights from stable isotopes and geochemical modelling. Isotopes Environ Health Stud 52(4):414–426CrossRefGoogle Scholar
  58. Pierotti L, Gherardi F, Facca G, Piccardi L, Moratti G (2017) Detecting CO2 anomalies in a spring on Mt. Amiata volcano (Italy). Phys Chem Earth 98:161–172CrossRefGoogle Scholar
  59. Pizzi G (1998) Modello di simulazione finalizzato allo studio della vulnerabilità dell’acquifero che alimenta le sorgenti di S. Fiora. Acquedotto del Fiora. Final report for Acquedotto del Fiora, May 1998, 88 pp. (In Italian)Google Scholar
  60. Principe C, Vezzoli L, La Felice S (2017) Stratigrafia ed evoluzione geologica del vulcano di Monte Amiata. In: Principe C, Lavorini G, Vezzoli L (eds) Il Vulcano di Monte Amiata. Esa Ed, Firenze, 2017, pp 85–102Google Scholar
  61. Rank D, Papesch W (2005) Isotopic composition of precipitation in Austria in relation to air circulation patterns and climate. In: Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate. Final report of a coordinated research project 2000–2004. Report IAEA-TECDOC-1453-2005, Vienna, pp 19-36Google Scholar
  62. Rapetti F, Vittorini S (1995) Carta climatica della Toscana. Pacini Editore, PisaGoogle Scholar
  63. Romagnoli P, Arias A, Barelli A, Cei M, Casini M (2010) An updated numerical model of the Larderello-Travale geothermal system, Italy. Geothermics 39:292–313CrossRefGoogle Scholar
  64. Rosegrant MW, Cai X, Cline SA (2002) World water and food to 2025 dealing with scarcity. International Food Policy Research Institute, WashingtonGoogle Scholar
  65. Saighi O (2005) Isotopic composition of precipitation from Algiers and Assekrem. In: Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate. Final report of a coordinated research project 2000–2004. Report IAEA-TECDOC-1453-2005 Vienna, pp 5–18Google Scholar
  66. Sappa G, Barbieri M, Ergul S, Ferranti F (2012) Hydrogeological conceptual model of groundwater from carbonate aquifers using environmental isotopes (18O, 2H) and chemical tracers: a case study in Southern Latium Region, Central Italy. J Water Resour Protect 4(09):695–716CrossRefGoogle Scholar
  67. Sbrilli L, Menichetti S et al. (2016) Report ARPAT—Acquifero del Monte Amiata: Monitoraggio Arpat anni 2003–2015. Valutazioni statistiche per i parametri: Arsenico, Boro, Conducibilità, pH, Solfati, Cloruri. (In Italian)Google Scholar
  68. Tanelli G (1983) Mineralizzazioni metallifere e minerogenesi della Toscana. Mem Soc Geol Italy 25:91–109Google Scholar
  69. Taylor R, Scanlon B, Doll P, Rodell M et al (2013) Ground water and climate change. Nat Clim Change 3(4):322–329CrossRefGoogle Scholar
  70. Van Bergen MJ (1983) Polyphase metamorphic sedimentary xenoliths form Mt Amiata volcanics (central Italy): evidence for a partially disrupted contact aureole. Geol Rundsch 72:637–662CrossRefGoogle Scholar
  71. Volpi G, Manzella A, Fiordelisi A (2003) Investigation of geothermal structures by magnetotellurics (MT) an example from the Mt. Amiata area, Italy. Geothermics 32(2):131–145CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of PisaPisaItaly
  2. 2.CNR-IGG, Institute of Geosciences and Earth ResourcesPisaItaly
  3. 3.Department of Earth SciencesUniversity of FlorenceFlorenceItaly
  4. 4.CNR-IGG, Institute of Geosciences and Earth ResourcesFlorenceItaly

Personalised recommendations