Advertisement

Plasmas in extreme electromagnetic fields

  • Francesco PegoraroEmail author
Classical and quantum plasmas
  • 42 Downloads
Part of the following topical collections:
  1. Classical and quantum plasmas: matter under extreme conditions
  2. Classical and quantum plasmas: matter under extreme conditions
  3. Classical and quantum plasmas: matter under extreme conditions

Abstract

The recent developments in the generation of laser pulses with ultra-high power (presently petawatt and progressing) have opened up a new frontier in plasma research by making it possible to obtain and to study “mesoscopic” amounts of relativistic (ionized) matter in compact-size experiments in the laboratory. This will make it possible to investigate in a controlled environment the nonlinear dynamics of collective relativistic systems, to enter the Quantum Electrodynamics plasma regime, and to explore conditions that are of interest for high-energy astrophysics and beyond.

Keywords

Relativistic plasmas Ultra-intense electromagnetic fields High-energy laboratory astrophysics 

Notes

Acknowledgements

I would like to thank the Accademia Nazionale dei Lincei and the Fondazione Guido Donegani for hosting the International conference “Classical and quantum plasmas: matter under extreme conditions” (Rome, Palazzo Corsini, April 5–6, 2018) where these physics issues were discussed.

References

  1. Askar’yan GA (1962) Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys JETP 15:1088Google Scholar
  2. Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I—linear analysis. II—nonlinear evolution. Astrophys J 376:214CrossRefGoogle Scholar
  3. Balescu R (2005) Aspects of anomalous transport in plasmas. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. Bell AR, Kirk JG (2008) Possibility of Prolific Pair Production with High-Power Lasers. Phys Rev Lett 101:200403CrossRefGoogle Scholar
  5. Borghesi M et al (1997) Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys Rev Lett 78:879CrossRefGoogle Scholar
  6. Borghesi M et al (2002) Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys Rev Lett 88:135002CrossRefGoogle Scholar
  7. Bret A, Firpo MC, Deutsch C (2005) Characterization of the Initial Filamentation of a Relativistic Electron Beam Passing through a Plasma. Phys Rev Lett 94:115002CrossRefGoogle Scholar
  8. Bulanov SV et al (2006) Electron bunch acceleration in the wake wave breaking regime. Plasma Phys Rep 32:263CrossRefGoogle Scholar
  9. Bulanov SV, Esirkepov TZh, Naumova NM, Pegoraro F, Vshivkov VA (1999) Soliton-like electromagnetic waves behind a super intense laser pulse in a plasma. Phys Rev Lett 82:3440CrossRefGoogle Scholar
  10. Bulanov SV, Esirkepov TZh, Khoroshkov VS, Kuznetsov AV, Pegoraro F (2002) Oncological hadrontherapy with laser ion accelerators. Phys Lett A 299:240CrossRefGoogle Scholar
  11. Bulanov SV, Esirkepov TZh, Tajima T (2003) Light Intensification towards the Schwinger Limit. Phys Rev Lett 91:085001CrossRefGoogle Scholar
  12. Bulanov SS, Esirkepov TZh, Kamenets FF, Pegoraro F (2006) Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures. Phys Rev E 73:036408CrossRefGoogle Scholar
  13. Bulanov SS, Esirkepov TZh, Thomas A, Koga J, Bulanov SV (2010) On the Schwinger limit attainability with extreme power lasers. Phys Rev Lett 105:220407CrossRefGoogle Scholar
  14. Bulanov SS, Mur VD, Narozhny NB, Nees J, Popov VS (2010) Multiple colliding electromagnetic pulses: a way to lower the threshold of \(e^+\, e^-\)-pair production from vacuum. Phys Rev Lett 104:220404CrossRefGoogle Scholar
  15. Bulanov SV, Esirkepov TZh, Kando M, Pirozhkov AS, Rosanov NN (2013) Relativistic mirrors in plasmas—novel results and perspectives. Phys Uspekhi 183:540Google Scholar
  16. Bulanov SV, Esirkepov TZ, Kando M, Koga J, Kondo K, Korn KG (2015) On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys Rep 41:1CrossRefGoogle Scholar
  17. Califano F, Prandi R, Pegoraro F, Bulanov SV (1998) Nonlinear current filamentation instability in an inhomogeneous collisionless plasma. Phys Rev E 58:7837CrossRefGoogle Scholar
  18. Coppi B (1980) Nonclassical transport and the ‘Principle of Profile Consistency’. Comm Plasma Phys Cont Fusion 5:261Google Scholar
  19. Di Piazza A, Hatsagortsyan KZ, Keitel CH (2005) Harmonic generation from laser-driven vacuum. Phys Rev D 72:085005CrossRefGoogle Scholar
  20. Di Piazza A, Milstein AI, Keitel CH (2007) Photon splitting in a laser field. Phys Rev A 76:032103CrossRefGoogle Scholar
  21. Di Piazza A, Mueller C, Hatsagortsyan KZ, Keitel CH (2012) Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys 84:1177CrossRefGoogle Scholar
  22. Einstein A (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik (Leipzig) 17:891CrossRefGoogle Scholar
  23. Elkina NV, Fedotov AM, Kostyukov IYu, Legkov MV, Narozhny NB, Nerush EN, Ruhl H (2011) QED cascades induced by circularly polarized laser fields. Phys Rev ST Accel Beams 14:054401CrossRefGoogle Scholar
  24. Esarey E, Schroeder CB, Leemans WP (2009) Physics of laser-driven plasma-based electron accelerators. Rev Mod Phys 81:1229CrossRefGoogle Scholar
  25. Fedotov AM, Narozhny NB (2007) Generation of harmonics by a focused laser beam in the vacuum. Phys Lett A 362:1CrossRefGoogle Scholar
  26. Fusion physics, International Atomic Energy Agency, STI/PUB/1562 (2012)Google Scholar
  27. Gregori G, Reville B, Miniati F (2015) The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers. Phys Rep 601:1CrossRefGoogle Scholar
  28. Heisenberg W, Euler H (1936) Folgerungen aus der Diracschen Theorie des Positrons. Z Phys 98:714CrossRefGoogle Scholar
  29. Huntington CM et al (2015) Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat Phys 11:173CrossRefGoogle Scholar
  30. Ipp A, Rebhan A, Strickland M (2011) Non-Abelian plasma instabilities: SU(3) versus SU(2). Phys Rev D 84:056003CrossRefGoogle Scholar
  31. Krausz F, Ivanov M (2009) Attosecond physics. Rev Mod Phys 81:163CrossRefGoogle Scholar
  32. Lawson JD (1957) Some criteria for a power producing thermonuclear reactor. Proc Phys Soc B 70:6CrossRefGoogle Scholar
  33. Litvak AG (1970) Finite-amplitude wave beams in a magnetoactive plasma. Soviet Phys JETP 30:166Google Scholar
  34. Lynden-Bell D, Pringle JE (1974) The evolution of viscous discs and the origin of the nebular variables. Mon Not R Astron Soc 168:603CrossRefGoogle Scholar
  35. Macchi A et al (2003) Fundamental issues in fast ignition physics: from relativistic electron generation to proton driven ignition. Nuclear Fusion 43:362CrossRefGoogle Scholar
  36. Macchi A, Pegoraro F (2018) Instability yields bright gamma emission, in news and views. Nat Photonics 12:314CrossRefGoogle Scholar
  37. Macchi A, Veghini S, Pegoraro F (2009) “Light Sail” acceleration reexamined. Phys Rev Lett 103:085003CrossRefGoogle Scholar
  38. Macchi A, Borghesi M, Passoni M (2013) Ion acceleration by superintense laser–plasma interaction. Rev Mod Phys 85:751CrossRefGoogle Scholar
  39. Marklund M, Shukla PK (2006) Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev Mod Phys 78:591CrossRefGoogle Scholar
  40. Mourou G, Tajima T, Bulanov SV (2006) Optics in the relativistic regime. Rev Mod Phys 78:309CrossRefGoogle Scholar
  41. Mourou GA, Korn G, Sandner W, Collier JL (eds) (2011) ELI-Whitebook, extreme light infrastructure science and technology with ultra-intense lasers. THOSS Media, BerlinGoogle Scholar
  42. Narozhny NB, Bulanov SS, Mur VD, Popov VS (2004) \(e^+\, e^-\)-pair production by a focused laser pulse in vacuum. Phys Lett A 330:1CrossRefGoogle Scholar
  43. Palodhi L, Califano F, Pegoraro F (2009) Nonlinear kinetic development of the Weibel instability and the generation of electrostatic coherent structures. Plasma Phys Contr Fus 51:125006CrossRefGoogle Scholar
  44. Plasma Science: advancing knowledge in the national interest, national research council. The National Academies Press, Washington D.C. (2007)Google Scholar
  45. Priest E, Forbes T (2007) Magnetic reconnection. Cambridge University Press, CambridgeGoogle Scholar
  46. Pringle JE (1981) Accretion discs in astrophysics. ARA&A 19:137CrossRefGoogle Scholar
  47. Rozanov NN (1993) Four-wave interactions of intense radiation in vacuum. Sov Phys JETP 76:991Google Scholar
  48. Sarri G et al (2015) Generation of neutral and high-density electron-positron pair plasmas in the laboratory. Nat Commun 6:6747CrossRefGoogle Scholar
  49. Sauter F (1931) Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Zeitschrift für Physik 82:742CrossRefGoogle Scholar
  50. Shakura NI, Sunyaev RI (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337Google Scholar
  51. Strickland D, Mourou G (1986) Compression of amplified chirped optical pulses. Opt Commun 56:212Google Scholar
  52. Tajima T (2003) Ultraintense laser and relativistic engineering. Rev Laser Eng 31:707CrossRefGoogle Scholar
  53. Tajima T, Nakajima K, Mourou G (2017) Laser acceleration. Rivista del Nuovo Cimento 40:33Google Scholar
  54. Tamburini M, Pegoraro F, Di Piazza A, Keitel CH, Macchi A (2010) Radiation reaction effects on radiation pressure acceleration. New J Phys 12:123005CrossRefGoogle Scholar
  55. Tavani M et al (2011) Discovery of powerful gamma-ray Flares from the Crab Nebula. Science 331:736CrossRefGoogle Scholar
  56. US Department of Energy, Plasma: at the frontier of scientific discovery. https://science.energy.gov/~/media/fes/pdf/program-news/Frontiers_of_Plasma_Science_Final_Report.pdf
  57. Uzdensky DA, Cerutti B, Begelman MC (2011) Reconnection-powered linear accelerator and gamma-ray Flares in the Crab Nebula. ApJ 737:L40CrossRefGoogle Scholar
  58. Velikhov EP (1959) Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. J Exp Theor Phys 36:1398Google Scholar
  59. Weber S et al (2017) P3: an installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines. Matter Radiat Extrem 2:149CrossRefGoogle Scholar
  60. Weibel ES (1959) Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys Rev Lett 2:83CrossRefGoogle Scholar
  61. Yamada M, Kulsrud R, Ji H (2010) Magnetic reconnection. Rev Mod Phys 82:603CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Physics DepartmentPisa UniversityPisaItaly
  2. 2.National Research CouncilNational Institute of OpticsPisaItaly

Personalised recommendations