Detection of terrestrial gamma-ray flashes with the AGILE/MCAL

  • Alessandro UrsiEmail author
  • Martino Marisaldi
  • Marco Tavani
  • the AGILE Team
A decade of AGILE
Part of the following topical collections:
  1. A Decade of AGILE: Results, Challenges and Prospects of Gamma-Ray Astrophysics
  2. A Decade of AGILE: Results, Challenges and Prospects of Gamma-Ray Astrophysics
  3. A Decade of AGILE: Results, Challenges and Prospects of Gamma-Ray Astrophysics


AGILE is one of the satellites currently detecting terrestrial gamma-ray flashes (TGFs). In particular, the AGILE MiniCALorimeter detected more than 2000 events in 8 years activity, by exploiting a unique sub-millisecond timescale trigger logic and high-energy range. A change in the onboard configuration enhanced the trigger capabilities for the detection of these events, overcoming dead time issues and enlarging the detection rate of these events up to \(>50\) TGFs/month, allowing to reveal shorter duration flashes. The quasi-equatorial low-inclination (\(2.5^{\circ }\)) orbit of AGILE allows for the detection of repeated TGFs coming from the same storms, at the same orbital passage and throughout successive orbital overpasses, over the same geographic region. All TGFs detected by AGILE are fulfilling a database that can be used for offline analysis and forthcoming studies. The limited number of missions currently detecting these brief terrestrial flashes makes the understanding of this phenomenon very challenging and, in this perspective, the AGILE satellite played and still plays a major role, helping shedding light to many aspects of TGF science.


Terrestrial gamma-ray flash Thunderstorm High-energy 


  1. Argan A et al (2008) The AGILE Data Handling in-Flight Performance, these proceedingsGoogle Scholar
  2. Bowers GS, Smith DM, Martinez-McKinney GF, Kamogawa M, Cummer SA, Dwyer JR, Wang D, Stock M, Kawasaki Z (2017) Gamma ray signatures of neutrons from a terrestrial gamma ray flash. Geophys Res Lett 44:10. CrossRefGoogle Scholar
  3. Briggs MS, Fishman GJ, Connaughton V, Bhat PN, Paciesas WS, Preece RD, Wilson-Hodge C, Chaplin VL, Kippen RM, von Kienlin A, Meegan CA, Bissaldi E, Dwyer JR, Smith DM, Holzworth RH, Grove JE, Chekhtman A (2010) First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor. J Geophys Res (Space Phys) 115:A07323. Google Scholar
  4. Connaughton V, Briggs MS, Holzworth RH, Hutchins ML, Fishman GJ, Wilson-Hodge CA, Chaplin VL, Bhat PN, Greiner J, von Kienlin A, Kippen RM, Meegan CA, Paciesas WS, Preece RD, Cramer E, Dwyer JR, Smith DM (2010) Associations between Fermi Gamma-ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. J Geophys Res (Space Phys) 115:A12307. CrossRefGoogle Scholar
  5. Dwyer JR (2008) Source mechanisms of terrestrial gamma-ray flashes. J Geophys Res 113:D10103. CrossRefGoogle Scholar
  6. Dwyer JR, Smith DM, Cummer SA (2012) High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci Rev 173:133. CrossRefGoogle Scholar
  7. Dwyer J, Liu N, Rassoul H (2013) In: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, vol. 15, EGU General Assembly Conference Abstracts, vol. 15, pp. EGU2013–3231Google Scholar
  8. Fishman GJ et al (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264:1313CrossRefGoogle Scholar
  9. Grefenstette BW, Smith DM, Hazelton BJ, Lopez LI (2009) First RHESSI terrestrial gamma ray flash catalog. J Geophys Res 114:A02314. CrossRefGoogle Scholar
  10. Gurevich AV, Milikh GM, Roussel-Dupre R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A 165:463. CrossRefGoogle Scholar
  11. Hutchins ML, Holzworth RH, Brundell JB, Rodger CJ (2012) Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci 47:RS6005. CrossRefGoogle Scholar
  12. Labanti C, Marisaldi M, Fuschino F, Galli M, Argan A, Bulgarelli A, di Cocco G, Gianotti F, Tavani M, Trifoglio M (2009) Design and construction of the Mini-Calorimeter of the AGILE satellite. Nuclear Instrum Method Phys Res A 598:470. CrossRefGoogle Scholar
  13. Marisaldi M, Fuschino F, Labanti C, Galli M, Longo F, Del Monte E, Barbiellini G, Tavani M, Giuliani A, Moretti E, Vercellone S, Costa E, Cutini S, Donnarumma I, Evangelista Y, Feroci M, Lapshov I, Lazzarotto F, Lipari P, Mereghetti S, Pacciani L, Rapisarda M, Soffitta P, Trifoglio M, Argan A, Boffelli F, Bulgarelli A, Caraveo P, Cattaneo PW, Chen A, Cocco V, D’Ammando F, De Paris G, Di Cocco G, Di Persio G, Ferrari A, Fiorini M, Froysland T, Gianotti F, Morselli A, Pellizzoni A, Perotti F, Picozza P, Piano G, Pilia M, Prest M, Pucella G, Rappoldi A, Rubini A, Sabatini S, Striani E, Trois A, Vallazza E, Vittorini V, Zambra A, Zanello D, Antonelli LA, Colafrancesco S, Gasparrini D, Giommi P, Pittori C, Preger B, Santolamazza P, Verrecchia F, Salotti L (2010) Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite. J Geophys Res (Space Phys) 115:A00E13. Google Scholar
  14. Marisaldi M, Argan A, Ursi A, Gjesteland T, Fuschino F, Labanti C, Galli M, Tavani M, Pittori C, Verrecchia F, D’Amico F, Østgaard N, Mereghetti S, Campana R, Cattaneo PW, Bulgarelli A, Colafrancesco S, Dietrich S, Longo F, Gianotti F, Giommi P, Rappoldi A, Trifoglio M, Trois A (2015) Enhanced detection of terrestrial gamma-ray flashes by AGILE. Geophys Res Lett 42:9481. CrossRefGoogle Scholar
  15. Marisaldi M, Fuschino F, Pittori C, Verrecchia F, Giommi P, Tavani M, Dietrich S, Price C, Argan A, Labanti C, Galli M, Longo F, Del Monte E, Barbiellini G, Giuliani A, Bulgarelli A, Gianotti F, Trifoglio M, Trois A (2014) In: EGU general assembly conference abstracts, EGU general assembly conference abstracts, vol. 16, EGU general assembly conference abstracts, vol. 16, p. 11326Google Scholar
  16. ROJ, FG, SM, MS, BMS, HRH, GJE, CA, CES, MBG, The first fermi?gbm terrestrial gamma ray flash catalog, Journal of Geophysical Research: Space Physics 0(0).
  17. Smith DM, Hazelton BJ, Grefenstette BW, Dwyer JR, Holzworth RH, Lay EH (2010) Terrestrial gamma ray flashes correlated to storm phase and tropopause height. J Geophys Res (Space Phys) 115:A00E49. Google Scholar
  18. Smith DM, Dwyer JR, Hazelton BJ, Grefenstette BW, Martinez-McKinney GFM, Zhang ZY, Lowell AW, Kelley NA, Splitt ME, Lazarus SM, Ulrich W, Schaal M, Saleh ZH, Cramer E, Rassoul H, Cummer SA, Lu G, Shao XM, Ho C, Hamlin T, Blakeslee RJ, Heckman S (2011) A terrestrial gamma ray flash observed from an aircraft. J Geophys Res (Atmos) 116:D20124. CrossRefGoogle Scholar
  19. Stanbro M, Briggs MS, Roberts OJ, Cramer ES, Cummer SA, Grove JE (2018) A study of consecutive terrestrial gamma-ray flashes using the gamma-ray burst monitor. J Geophys Res (Space Phys) 123:9634. CrossRefGoogle Scholar
  20. Ursi A, Marisaldi M, Tavani M, Casella D, Sanò P, Dietrich S (2016) Detection of multiple terrestrial gamma-ray flashes from thunderstorm systems. J Geophys Res (Space Phys) 121:11. Google Scholar
  21. Ursi A, Sanò P, Casella D, Marisaldi M, Dietrich S, Tavani M (2017) A pipeline to link meteorological information and TGFs detected by AGILE. J Geophys Res (Space Phys) 122:2300. Google Scholar
  22. Ursi A, Guidorzi C, Marisaldi M, Sarria D, Frontera F (2017) Terrestrial gamma-ray flashes in the BeppoSAX data archive. J Atmos Solar Terr Phys 156:50. CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.INAF-IAPSRomaItaly
  2. 2.Birkeland Centre for Space Science, Department of Physics and TechnologyUniversity of BergenBergenNorway

Personalised recommendations