Advertisement

Abstract

Pulsar wind nebulae inside young supernova remnants, and in particular the Crab nebula, are probably the best laboratories for high-energy astrophysics and relativistic plasma physics. They have been modeled numerically for more than a decade through multi-dimensional relativistic MHD simulations, relying on axial symmetry until a few years ago while currently using full three-dimensional simulations employing adaptive meshes. Here, we discuss the most recent findings, especially those obtained by our Arcetri group, focusing on the problem of magnetic field dissipation inside the nebula.

Keywords

ISM: supernova remnants ISM: individual objects Crab nebula 

Notes

Acknowledgements

The authors acknowledge support from the PRIN-MIUR project Multi-scale Simulations of High-Energy Astrophysical Plasmas (Prot. 2015L5EE2Y).

References

  1. AGILE-coll (2011) Discovery of powerful gamma-ray flares from the Crab nebula. Science 331:736.  https://doi.org/10.1126/science.1200083 CrossRefGoogle Scholar
  2. Atoyan AM, Aharonian FA (1996) On the mechanisms of gamma radiation in the Crab nebula. MNRAS 278:525–541CrossRefGoogle Scholar
  3. Begelman MC (1998) Instability of toroidal magnetic field in jets and plerions. ApJ 493:291.  https://doi.org/10.1086/305119 CrossRefGoogle Scholar
  4. Bietenholz MF, Hester JJ, Frail DA, Bartel N (2004) The Crab nebula’s wisps in radio and optical. ApJ 615:794–804.  https://doi.org/10.1086/424653 CrossRefGoogle Scholar
  5. Bucciantini N, Bandiera R, Olmi B, Del Zanna L (2017) Modeling the effect of small-scale magnetic turbulence on the X-ray properties of Pulsar Wind Nebulae. MNRAS 470:4066CrossRefGoogle Scholar
  6. Camus NF, Komissarov SS, Bucciantini N, Hughes PA (2009) Observations of ‘wisps’ in magnetohydrodynamic simulations of the Crab nebula. MNRAS 400:1241–1246.  https://doi.org/10.1111/j.1365-2966.2009.15550.x CrossRefGoogle Scholar
  7. Cerutti B, Werner GR, Uzdensky DA, Begelman MC (2014) Gamma-ray flares in the Crab nebula: a case of relativistic reconnection? Phys Plasmas 21(5):056501.  https://doi.org/10.1063/1.4872024 CrossRefGoogle Scholar
  8. Del Zanna L, Olmi B (2017) Modelling Pulsar Wind Nebulae, chap. 10. Springer International Publishing, Astrophysics and Space Science Library, Berlin, p 446Google Scholar
  9. Del Zanna L, Amato E, Bucciantini N (2004) Axially symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants. On the origin of torus and jet-like features. A&A 421:1063–1073.  https://doi.org/10.1051/0004-6361:20035936 CrossRefGoogle Scholar
  10. Del Zanna L, Volpi D, Amato E, Bucciantini N (2006) Simulated synchrotron emission from pulsar wind nebulae. A&A 453:621–633.  https://doi.org/10.1051/0004-6361:20064858 CrossRefGoogle Scholar
  11. Del Zanna L, Papini E, Landi S, Bugli M, Bucciantini N (2016) Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited. MNRAS 460:3753–3765.  https://doi.org/10.1093/mnras/stw1242 CrossRefGoogle Scholar
  12. FERMI-coll (2011) Gamma-ray flares from the Crab nebula. Science 331:739.  https://doi.org/10.1126/science.1199705 Google Scholar
  13. Gaensler BM, Slane PO (2006) the evolution and structure of pulsar wind nebulae. ARA&A 44:17–47.  https://doi.org/10.1146/annurev.astro.44.051905.092528 CrossRefGoogle Scholar
  14. Hester JJ (2008) The Crab nebula: an astrophysical chimera. ARA&A 46:127–155.  https://doi.org/10.1146/annurev.astro.45.051806.110608 CrossRefGoogle Scholar
  15. Hester JJ, Mori K, Burrows D, Gallagher JS, Graham JR, Halverson M, Kader A, Michel FC, Scowen P (2002) Hubble space telescope and chandra monitoring of the crab synchrotron nebula. ApJL 577:L49–L52.  https://doi.org/10.1086/344132 CrossRefGoogle Scholar
  16. Kennel CF, Coroniti FV (1984a) Confinement of the Crab pulsar’s wind by its supernova remnant. ApJ 283:694–709.  https://doi.org/10.1086/162356 CrossRefGoogle Scholar
  17. Kennel CF, Coroniti FV (1984b) Magnetohydrodynamic model of Crab nebula radiation. ApJ 283:710–730.  https://doi.org/10.1086/162357 CrossRefGoogle Scholar
  18. Komissarov SS, Lyubarsky YE (2004) Synchrotron nebulae created by anisotropic magnetized pulsar winds. MNRAS 349:779–792.  https://doi.org/10.1111/j.1365-2966.2004.07597.x CrossRefGoogle Scholar
  19. Lyubarsky YE (2002) On the structure of the inner Crab nebula. MNRAS 329:L34–L36.  https://doi.org/10.1046/j.1365-8711.2002.05151.x CrossRefGoogle Scholar
  20. Lyutikov M, Komissarov S, Sironi L, Porth O (2018) Particle acceleration in explosive relativistic reconnection events and Crab nebula gamma-ray flares. J Plasma Phys 84:635840201.  https://doi.org/10.1017/S0022377818000168 CrossRefGoogle Scholar
  21. Mignone A, Zanni C, Tzeferacos P, van Straalen B, Colella P, Bodo G (2012) The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics. ApJS 198:7.  https://doi.org/10.1088/0067-0049/198/1/7 CrossRefGoogle Scholar
  22. Mignone A, Striani E, Tavani M, Ferrari A (2013) Modelling the kinked jet of the Crab nebula. MNRAS.  https://doi.org/10.1093/mnras/stt1632 Google Scholar
  23. Mignone A, Bodo G, Vaidya B, Mattia G (2018) A particle module for the PLUTO code. An implementation of the MHD?PIC equations. I. ApJ 859:1.  https://doi.org/10.3847/1538-4357/aabccd Google Scholar
  24. Mizuno Y, Lyubarsky Y, Nishikawa KI, Hardee PE (2011) Three-dimensional relativistic magnetohydrodynamic simulations of current-driven instability. II. Relaxation of pulsar wind nebula. ApJ 728:90.  https://doi.org/10.1088/0004-637X/728/2/90 CrossRefGoogle Scholar
  25. Olmi B, Del Zanna L, Amato E, Bandiera R, Bucciantini N (2014) On the magnetohydrodynamic modelling of the Crab nebula radio emission. MNRAS 438:1518–1525.  https://doi.org/10.1093/mnras/stt2308 CrossRefGoogle Scholar
  26. Olmi B, Del Zanna L, Amato E, Bucciantini N (2015) Constraints on particle acceleration sites in the Crab nebula from relativistic magnetohydrodynamic simulations. MNRAS 449:3149–3159.  https://doi.org/10.1093/mnras/stv498 CrossRefGoogle Scholar
  27. Olmi B, Del Zanna L, Amato E, Bucciantini N, Mignone A (2016) Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions. J Plasma Phys 82(6):635820601.  https://doi.org/10.1017/S0022377816000957 CrossRefGoogle Scholar
  28. Pavlov GG, Teter MA, Kargaltsev O, Sanwal D (2003) The variable jet of the vela pulsar. ApJ 591:1157–1171.  https://doi.org/10.1086/375531 CrossRefGoogle Scholar
  29. Porth O, Komissarov SS, Keppens R (2013) Solution to the sigma problem of pulsar wind nebulae. MNRAS 431:L48–L52.  https://doi.org/10.1093/mnrasl/slt006 CrossRefGoogle Scholar
  30. Porth O, Komissarov SS, Keppens R (2014) Three-dimensional magnetohydrodynamic simulations of the Crab nebula. MNRAS 438:278–306.  https://doi.org/10.1093/mnras/stt2176 CrossRefGoogle Scholar
  31. Porth O, Vorster MJ, Lyutikov M, Engelbrecht NE (2016) Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models. MNRAS 460:4135–4149.  https://doi.org/10.1093/mnras/stw1152 CrossRefGoogle Scholar
  32. Rees MJ, Gunn JE (1974) The origin of the magnetic field and relativistic particles in the Crab nebula. MNRAS 167:1–12CrossRefGoogle Scholar
  33. Schweizer T, Bucciantini N, Idec W, Nilsson K, Tennant A, Weisskopf M, Zanin R (2013) Characterization of the optical and X-ray properties of the northwestern wisps in the Crab nebula. MNRAS 433:3325CrossRefGoogle Scholar
  34. Tang X, Chevalier RA (2012) Particle transport in young pulsar wind nebulae. ApJ 752:83.  https://doi.org/10.1088/0004-637X/752/2/83 CrossRefGoogle Scholar
  35. Volpi D, Del Zanna L, Amato E, Bucciantini N (2007) thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton. A&A 485:337–349CrossRefGoogle Scholar
  36. Weisskopf MC, Hester JJ, Tennant AF, Elsner RF, Schulz NS, Marshall HL, Karovska M, Nichols JS, Swartz DA, Kolodziejczak JJ, O’Dell SL (2000) Discovery of spatial and spectral structure in the X-ray emission from the Crab nebula. ApJL 536:L81–L84.  https://doi.org/10.1086/312733 CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversità di FirenzeSesto FiorentinoItaly
  2. 2.INAF-Osservatorio Astrofisico di ArcetriFlorenceItaly
  3. 3.Dipartimento di FisicaUniversità di TorinoTurinItaly

Personalised recommendations