Advertisement

The origin of water on Earth: stars or diamonds?

A conversation among astronomers and geologists
  • Rossella Spiga
  • Cesare Barbieri
  • Ivano Bertini
  • Monica Lazzarin
  • Fabrizio Nestola
Lincei Prizewinners
  • 86 Downloads
Part of the following topical collections:
  1. Lincei Prizewinners

Abstract

This contribution deals with two different hypotheses on the origin of superficial water on the Earth: the Endogenous hypothesis and the Exogenous one. They proposed that water either was brought to the surface of the Earth from the deep interior of the Earth or would have come to the Earth from celestial bodies that bombarded the planet billions of years ago. The evidence from recent astronomical and geological findings supporting the two alternative hypotheses will be discussed.

Keywords

Water Solar System Earth Comets Asteroids Diamonds 

Notes

Acknowledgements

We warmly thank Professor Ernesto Carafoli for his support, helpful suggestions and critical review of the paper. The ERC Starting Grant INDIMEDEA (agreement n. 307322) to Fabrizio Nestola supported this research.

Compliance with ethical standards

Conflict of interest

No conflict of interest can occur with Prof. Carafoli.

References

  1. Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, Bieler A, Bochsler P, Briois C, Calmonte U, Combi M, De Keyser J, Eberhardt P, Fiethe B, Fuselier S, Gasc S, Gombosi TI, Hansen KC, Hässig Jäckel A, Kopp E, Korth A, LeRoy L, Mall U, Marty B, Mousis O, Neefs E, Owen T, Rème H, Rubin M, Sémon T, Tzou CY, Waite H, Wurz P (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(6220):1261952.  https://doi.org/10.1126/science.1261952 CrossRefGoogle Scholar
  2. Bertini I (2011) Main Belt Comets: a new class of small bodies in the solar system. Planet Space Sci 59(5–6):337–365.  https://doi.org/10.1016/j.pss.2011.01.014 CrossRefGoogle Scholar
  3. Ceccarelli C, Caselli P, Bockelee-Morvan D, Mousis O, Pizzarello S, Robert F, Semenov D (2014) Deuterium Fractionation: the Ariadne’s Thread from the pre-collapse phase to meteorites and comets today, protostars and Planets VI, vol 914. University of Arizona Press, Tucson, pp 859–882Google Scholar
  4. Goesmann F, Rosenbauer H, Bredehöft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Krüger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa Thiemann W, Ulamec S (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science. 349(6247):aab0689.  https://doi.org/10.1126/science.aab0689 CrossRefGoogle Scholar
  5. Hallis LJ (2017) D/H ratios of the inner solar system. Philos Trans R Soc A.  https://doi.org/10.1098/rsta.2015.0390 CrossRefGoogle Scholar
  6. Hallis LJ, Huss GR, Nagashima K, Taylor GJ, Halldórsson SA, Hilton DR, Mottl MJ, Meech KJ (2015) Evidence for primordial water in Earth’s deep mantle. Science 350(6262):795–797.  https://doi.org/10.1126/science.aac483 CrossRefGoogle Scholar
  7. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball earth. Science 281(5381):1342.  https://doi.org/10.1126/science.281.5381.1342 CrossRefGoogle Scholar
  8. Izidoro A, De Souza Torres K, Winter OC, Haghighipour N (2013) A compound model for the origin of Earth’s water. Earth Planet Astrophys.  https://doi.org/10.1088/0004-637X/767/1/54 CrossRefGoogle Scholar
  9. Kite ES, Howard AD, Lucas A, Lewis KW (2015) Resolving the era of river-forming climates on Mars using stratigraphic logs of river-deposit dimensions. Earth Planet Sci Lett 420:55–65.  https://doi.org/10.1016/j.epsl.2015.03.019 CrossRefGoogle Scholar
  10. Kuzmin RO, Zabalueva EV, Mitrofanov IG, Litvak ML, Boynton WV, Saunders RS (2004) Regions of potential existence of free water (Ice) in the near-surface martian ground: results from the mars odyssey high-energy neutron detector (HEND). Sol Syst Res 38(1):1–11.  https://doi.org/10.1023/B:SOLS.0000015150.61420.5b CrossRefGoogle Scholar
  11. Linsky JL, Draine BT, Moos HW, Jenkins EB, Wood BE, Oliveira C, Blair WP, Friedman SD, Gry C, Knauth D, Kruk JW, Lacour S, Lehner S, Redfield S, Shull JM, Sonneborn G, Williger GM (2006) What Is the total deuterium abundance in the local galactic disk? Astrophys J 647(2):1106–1124.  https://doi.org/10.1086/505556 CrossRefGoogle Scholar
  12. Mehta M, Renno NO, Marshall J, Rob GM, Sengupta A, Rusche NA, Kok JF, Arvidson RE, Markiewicz WJ, Lemmon MT, Smith PH (2011) Explosive erosion during the Phoenix landing exposes subsurface water on Mars. Icarus 211(1):172–194.  https://doi.org/10.1016/j.icarus.2010.10.003 CrossRefGoogle Scholar
  13. Morbidelli A, Crida A (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191(1):158–171.  https://doi.org/10.1016/j.icarus.2007.04.001 CrossRefGoogle Scholar
  14. Morbidelli A, Petit JM, Gladman B, Chambers J (2000) A plausible cause of the late heavy bombardment, American Astronomical Society. In: DPS Meeting#32, id.52.07; Bulletin of the American Astronomical Society, vol. 32, p 1100Google Scholar
  15. Nestola F, Smyth JR (2016) Diamonds and water in the deep Earth: a new scenario. Int Geol Rev 58(3):263–276.  https://doi.org/10.1080/00206814.2015.1056758 CrossRefGoogle Scholar
  16. Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson DG, Pamato MG, Alvaro M, Peruzzo L, Gurney JJ, Moore E, Davidson J (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555(7695):237–241.  https://doi.org/10.1038/nature25972 CrossRefGoogle Scholar
  17. Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (2018) Radar evidence of subglacial liquid water on Mars. Science 361(6401):490–493.  https://doi.org/10.1126/science.aar7268 CrossRefGoogle Scholar
  18. Paganini L, Mumma MJ, Gibb EL, Villanueva GL (2017) Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths. Astrophys J Lett.  https://doi.org/10.3847/2041-8213/aa5cb3 CrossRefGoogle Scholar
  19. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507(7491):221–224.  https://doi.org/10.1038/nature13080 CrossRefGoogle Scholar
  20. Raymond SN, Morbidelli A (2014) The Grand Tack model: a critical review, complex planetary systems. In: Proceedings of the international astronomical union, IAU symposium, vol 310, pp 194–203.  https://doi.org/10.1017/S1743921314008254
  21. Sembach K (2010) Light elements in the Universe. In: Charbonnel C, Tosi M, Primas F, Chiappini C (eds) Proceedings IAU symposium no 268, 2009.  https://doi.org/10.1017/S1743921310003856
  22. Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333(6041):434–436.  https://doi.org/10.1126/science.1206275 CrossRefGoogle Scholar
  23. Smith EM, Shirey SB, Nestola F, Bullock ES, Wang J, Richardson SH, Wang W (2016) Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 354(6318):1403–1405.  https://doi.org/10.1126/science.aal1303 CrossRefGoogle Scholar
  24. Smith EM, Shirey SB, Richardson SH, Nestola F, Bullock ES, Wang J, Wang W (2018) Blue boron-bearing diamonds from Earth’s lower mantle. Nature 560:84–87.  https://doi.org/10.1038/s41586-018-0334-5 CrossRefGoogle Scholar
  25. Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1–2):5–32.  https://doi.org/10.1016/j.oregeorev.2007.05.002 CrossRefGoogle Scholar
  26. Tschauner O, Huang S, Greenberg E, Prakapenka VB, Ma C, Rossman GR, Shen AH, Zhang D, Newville M, Lanzirotti A, Tait K (2018) Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359(6380):1136–1139.  https://doi.org/10.1126/science.aao3030 CrossRefGoogle Scholar
  27. Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435:459–461.  https://doi.org/10.1038/nature03539 CrossRefGoogle Scholar
  28. Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA, Miller G, Grimes J, Perry ME, Miller KE, Bouquet A, Lunine JI, Brockwell T, Bolton SJ (2017) Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356(6334):155–159.  https://doi.org/10.1126/science.aai8703 CrossRefGoogle Scholar
  29. Wakeford HR, Sing DK, Deming D, Lewis NK, Goyal J, Wilson TJ, Barstow J, Kataria T, Drummond B, Evans TM, Carter AL, Nikolov N, Knutson HA, Ballester GE, Mandell AM (2018) The complete transmission spectrum of WASP-39b with a precise water constraint. Astronom J 155(1):14.  https://doi.org/10.3847/1538-3881/aa9e4e (article id. 29) CrossRefGoogle Scholar
  30. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475(7355):206–209.  https://doi.org/10.1038/nature10201 CrossRefGoogle Scholar
  31. Wilson JT, Eke VR, Massey RJ, Elphic RC, Feldman WC, Maurice S, Teodoro LFA (2018) Equatorial locations of water on Mars: improved resolution maps based on Mars odyssey neutron spectrometer data. Icarus 299:148–160.  https://doi.org/10.1016/j.icarus.2017.07.028 CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PadovaPaduaItaly
  2. 2.Department of GeoscienceUniversity of PadovaPaduaItaly

Personalised recommendations