Advertisement

Quantum mechanics in Earth sciences: a one-century-old story

  • Mauro Prencipe
LINCEI PRIZEWINNERS
  • 43 Downloads
Part of the following topical collections:
  1. Lincei Prizewinners

Abstract

Nowadays, it is possible to calculate, at the ab initio level, large classes of properties of condensed matter, from the crystal structure and mechanical properties, to the thermodynamics, and therefore the stability in a given environment and in a range of temperature and pressure conditions. Predictions from calculations of this type can be used to estimate geophysical properties such as densities of mantle rocks as they change along geotherms, the geotherms themselves, phase transitions and their features, seismic velocity profiles to be compared with models derived from other paradigms and techniques. Moreover, known facts and observations concerning structure, behaviour, properties of materials and properties of whole complex systems of materials can be explained or at least rationalized within a common and very general frame that is at the basis of all the currently known physics and chemistry. However, the development of ideas, paradigms and related techniques did not come out all of a sudden, but steadily proceeded from the early days till now, without a real solution of continuity. During the time, quantum mechanics heavily contributed to create a language, a set of basic ideas and a frame of mind that is extensively used by chemists and crystallographers to interpret the relevant facts. What we know today, and how we currently apply quantum mechanics to systems of our interest, is largely dependent upon the path followed during the years to implement the theory in practical and efficient algorithms to make calculations for real systems. This paper will present a brief review of the paths followed, along with their motivations, since those early and heroic days of physics at the beginning of the last past century. The aim is to provide the reader with a general view of the subject that could possibly drive her/him toward the choice of more specific papers from the huge literature, concerning more restricted and specialized topics.

Keywords

Quantum mechanics Earth sciences Chemical bond Elasticity Thermodynamics Geophysics 

Notes

Acknowledgements

The Accademia dei Lincei must be acknowledged for offering me the opportunity to write this review. Gerald Gibbs must also be gratefully acknowledged for reviewing the manuscript, and for being one of the most important inspiring sources in my scientific career.

References

  1. Aliatis I, Lambruschi E, Mantovani L, Bersani D, Ando S, Gatta D, Gentile P, Salvioli-Mariani E, Prencipe M, Tribaudino M, Lottici PP (2015) A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (\(\text{ NaAlSi }_3 \text{ O }_8\)). J Raman Spectrosc 46:501–508CrossRefGoogle Scholar
  2. Anderson OL (1995) Equation of state of solids for geophysics and ceramic science. Oxford monographs on geology and geophysics, vol 31. Oxford University Press, New YorkGoogle Scholar
  3. Anzolini C, Prencipe M, Alvaro M, Romano C, Vona A, Lorenzon S, Smith EM, Brenker FE, Nestola F (2018) Depth of formation of super-deep diamonds: Raman barometry of \(\text{ CaSiO }_3\)-walstromite inclusions. Am Mineral 103:69–74CrossRefGoogle Scholar
  4. Aquilano D, Bruno M, Rubbo M, Pastero L, Massaro FR (2015) Twin laws and energy in monoclinic hydroxyapatite, \(\text{ Ca }_5(\text{ PO }_4)_3(\text{ OH })\). Cryst Growth Des 15:411–418CrossRefGoogle Scholar
  5. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishing, PhiladelphiaGoogle Scholar
  6. Bader RFW (1994) Atoms in molecules. International series of monographs in chemistry, vol 22. Oxford University Press, OxfordGoogle Scholar
  7. Bader RFW (2009) Bond paths are not chemical bonds. J Chem Phys 113:10391–10396CrossRefGoogle Scholar
  8. Bader RFW, Austen MA (1997) Properties of atoms in molecules: atoms under pressure. J Chem Phys 107:4271–4285CrossRefGoogle Scholar
  9. Bader RFW, Essen H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960CrossRefGoogle Scholar
  10. Bader RFW, Gillespie RJ, MacDougall PJ (1988) A physical basis for the VSEPR model of molecular geometry. J Am Chem Soc 110:7329–7336CrossRefGoogle Scholar
  11. Balan E, Saitta AM, Allard T, Fuchs Y, Mauri F (2002) First-principles modeling of the infrared spectrum of lizardite. Am Mineral 87:1286–1290CrossRefGoogle Scholar
  12. Bass JD, Sinogeikin SV, Li B (2008) Elastic properties of minerals: a key for understanding the composition and temperature of Earths interior. Elements 4:165–170CrossRefGoogle Scholar
  13. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:30983100CrossRefGoogle Scholar
  14. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  15. Belmonte D (2017) First principles thermodynamics of minerals at HP-HT conditions: MgO as a prototypical material. Minerals 7:183CrossRefGoogle Scholar
  16. Belmonte D, Ottonello G, Zuccolini MV (2013) Melting of alpha-\(\text{ Al }_2 \text{ O }_3\) and vitrification of the undercooled alumina liquid: ab initio vibrational calculations and their thermodynamic implications. J Chem Phys 138:064507CrossRefGoogle Scholar
  17. Belmonte D, Ottonello G, Zuccolini MV, Attene M (2017a) The system \(\text{ MgO-Al }_2 \text{ O }_3- \text{ SiO }_2\) under pressure: a computational study of melting relations and phase diagrams. Chem Geol 461:54–64CrossRefGoogle Scholar
  18. Belmonte D, Ottonello G, Zuccolini MV (2017b) Ab initio-assisted assessment of the CaO–SiO\(_2\) system under pressure. Calphad 59:12–30CrossRefGoogle Scholar
  19. Berlin T (1951) Binding regions in diatomic molecules. J Chem Phys 19:208–213CrossRefGoogle Scholar
  20. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, OxfordGoogle Scholar
  21. Bruno M, Rubbo M, Pastero L, Massaro FR, Nestola F, Aquilano D (2015) Computational approach to the study of epitaxy: natural occurrence in diamond/olivine and aragonite/zabuyelite. Cryst Growth Des 15:2979–2987CrossRefGoogle Scholar
  22. Bruno M, Rubbo M, Aquilano D, Massaro FR, Nestola F (2016) Diamond and its olivine inclusions: a strange relation revealed by ab initio simulations. Earth Planet Sci Lett 435:31–35CrossRefGoogle Scholar
  23. Causà M, Dovesi R, Roetti C, Kotomin E, Saunders VR (1987) A periodic ab initio Hartree–Fock calculation on corundum. Chem Phys Lett 140:120–123CrossRefGoogle Scholar
  24. Chai JD, Gordon MH (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  25. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  26. Corno M, Busco C, Civalleri B, Ugliengo P (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite \(\text{ Ca }_{10}(\text{ PO }_4)_6(\text{ OH })_2\). Phys Chem Chem Phys 8:2464–2472CrossRefGoogle Scholar
  27. Coulson CA (1955) The contributions of wave mechanics to chemistry. J Chem Soc 2069–2084Google Scholar
  28. Crawford TD, Schaefer HF (2007) An introduction to coupled cluster theory for computational chemists. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 14. VCH Publishers, New York, pp 33–136CrossRefGoogle Scholar
  29. Cremer D (2001) Density functional theory: coverage of dynamic and non-dynamic electron correlation effects. Mol Phys 99:1899–1940CrossRefGoogle Scholar
  30. D’Arco Ph, Mustapha S, Ferrabone M, Nöel Y, De La Pierre M, Dovesi R (2013) Symmetry and random sampling of symmetry independent configurations for the simulation of disordered solids. J Phys Condens Matter 25:355401CrossRefGoogle Scholar
  31. Davisson C, Germer LH (1927) The scattering of electrons by a single crystal of nickel. Nature 119:558–560CrossRefGoogle Scholar
  32. De La Pierre M, Belmonte D (2016) Ab initio investigation of majorite and pyrope garnets: lattice dynamics and vibrational spectra. Am Mineral 101:162–174CrossRefGoogle Scholar
  33. De La Pierre M, Orlando R, Maschio L, Doll K, Ugliengo P, Dovesi R (2011) Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite \(\text{ Mg }_2 \text{ SiO }_4\). J Comput Chem 32:1775–1784CrossRefGoogle Scholar
  34. De La Pierre M, Nöel Y, Mustapha S, Meyer A, D’Arco Ph, Dovesi R (2013) The infrared vibrational spectrum of andradite–grossular solid solutions. A quantum-mechanical simulation. Am Mineral 98:966–976CrossRefGoogle Scholar
  35. Demichelis R, Civalleri B, D’Arco Ph, Dovesi R (2010a) Performance of 12 DFT functionals in the study of crystal systems: \(\text{ Al }_2 \text{ SiO }_5\) orthosilicates and Al hydroxides as a case study. Int J Quantum Chem 110:2260–2273CrossRefGoogle Scholar
  36. Demichelis R, Civalleri B, Ferrabone M, Dovesi R (2010b) On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. Int J Quantum Chem 110:406–415CrossRefGoogle Scholar
  37. Dirac PAM (1930a) The principles of quantum mechanics. Clarendon Press, OxfordGoogle Scholar
  38. Dirac PAM (1930b) Note on exchange phenomena in the Thomas atom. Math Proc Camb Philos Soc 26:376–385CrossRefGoogle Scholar
  39. Dovesi R, Pisani C, Roetti C, Silvi B (1987) The electronic structure of \(\alpha \)-quartz: a periodic Hartree–Fock calculation. J Chem Phys 86:6967–6971CrossRefGoogle Scholar
  40. Dovesi R, Erba A, Orlando R, Zicovich-Wilson CM, Civalleri B, Maschio L, Rerat M, Casassa S, Baima J, Salustro S, Kirtman B (2018) Quantum mechanical condensed matter simulations with CRYSTAL. WIREs Comput Mol Sci 8:e1360CrossRefGoogle Scholar
  41. Einstein A (1905) On the electrodynamics of moving bodies. Ann Phys 17:891–921CrossRefGoogle Scholar
  42. Erba A, Mahmoud A, Belmonte D, Dovesi R (2014) High pressure elastic properties of minerals from ab initio simulations: the case of pyrope, grossular and andradite silicate garnets. J Chem Phys 140:124703CrossRefGoogle Scholar
  43. Frost DJ (2008) The upper mantle and transition zone. Elements 4:171–176CrossRefGoogle Scholar
  44. Gatti C (2015) Chemical bonding in crystals: new directions. Z Kristallogr 220:399–457Google Scholar
  45. Gibbs GV, Downs JW, Boisen MB (1994) The elusive SiO bond. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) MSA reviews in mineralogy, Silica, vol 29, pp 331–368Google Scholar
  46. Gibbs GV, Boisen Jr MB, Beverly LL, Rosso KM (2001) A computational quantum chemical study of the bonded interactions in Earth materials and structurally and chemically related molecules. In: Cygan RT, Kubicky JD (eds) MSA reviews in mineralogy and geochemistry, molecular modeling theory: application in the geosciences, vol 42, pp 345–381CrossRefGoogle Scholar
  47. Gibbs GV, Jayatilaka D, Spackman MA, Cox DF, Rosso KM (2006) Si–O bonded interactions in silicate crystals and molecules: a comparison. J Phys Chem A 110:12678–12683CrossRefGoogle Scholar
  48. Gibbs GV, Downs RT, Cox DF, Ross NL, Boisen MB, Rosso KM (2008a) Shared and closed-shell O–O interactions in silicates. J Phys Chem A 112:3693–3699CrossRefGoogle Scholar
  49. Gibbs GV, Downs RT, Cox DF, Ross NL, Prewitt CT, Rosso KM, Lippmann T, Kirfel A (2008b) Bonded interactions and the crystal chemistry of minerals: a review. Zeits Krist 223:1–40Google Scholar
  50. Gibbs GV, Ross NL, Cox DF, Rosso KM (2014) Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling’s rules revisited. Am Mineral 99:1071–1084CrossRefGoogle Scholar
  51. Gillespie RJ, Robinson EA (1996) Electron domains and the VSEPR model of molecular geometry. Angew Chem Int Ed Engl 35:495–514CrossRefGoogle Scholar
  52. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864–B871CrossRefGoogle Scholar
  53. Koch W, Holthausen MC (2000) A chemists guide to density functional theory. Wiley-VCH, WeinheimGoogle Scholar
  54. Lacivita V, Erba A, Dovesi R, D’Arco Ph (2014) Elasticity of grossular–andradite solid solution: an ab initio investigation. Phys Chem Chem Phys 16:15331–15338CrossRefGoogle Scholar
  55. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  56. Maschio L, Ferrabone M, Meyer A, Garza J, Dovesi R (2011) The infrared spectrum of spessartine \(\text{ Mn }_3 \text{ Al }_2 \text{ Si }_3 \text{ O }_{12}\): an ab initio all electron simulation with five different functionals (LDA, PBE, PBESOL, B3LYP and PBE0. Chem Phys Lett 501:612–618CrossRefGoogle Scholar
  57. Matsui M, Higo Y, Okamoto Y, Irifune T, Funakoshi K (2012) Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: application as a primary pressure standard. Am Mineral 97:1670–1675CrossRefGoogle Scholar
  58. McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, LondonGoogle Scholar
  59. Merli M, Pavese A (2018) Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids. Acta Crystallogr A 74:102–111CrossRefGoogle Scholar
  60. Murri M, Mazzucchelli ML, Campomenosi N, Korsakov AV, Prencipe M, Mihailova BD, Scambelluri M, Angel RJ, Alvaro M (2018) Raman elastic geobarometry for anisotropic minerals inclusions. Am Mineral.  https://doi.org/10.2138/am-2018-6625CCBY (in press)
  61. Nestola F, Prencipe M, Nimis P, Sgreva N, Perrit SH, Chinn IL, Zaffiro G (2018) Toward a robust elastic geobarometry of kyanite inclusions in eclogitic diamonds. J Geophys Res 123:6411–6423Google Scholar
  62. Noel Y, Catti M, D’Arco Ph, Dovesi R (2006) The vibrational frequencies of forsterite \(\text{ Mg }_2 \text{ SiO }_4\); an all-electron ab initio study with the CRYSTAL code. Phys Chem Miner 33:383–393CrossRefGoogle Scholar
  63. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704CrossRefGoogle Scholar
  64. Oganov AR, Lyakhov AO, Valle M (2011) How evolutionary crystal structure prediction works—and why. Acc Chem Res 44:227–237CrossRefGoogle Scholar
  65. Ogilvie JF, Wang FYH (1991) Does \({\text{ He }_2}\) exist? J Chin Chem Soc 38:425–427CrossRefGoogle Scholar
  66. Ottonello G, Civalleri B, Ganguly J, Perger WF, Belmonte D, Zuccolini MV (2010a) Thermo-chemical and thermo-physical properties of the high-pressure phase anhydrous B (\(\text{ Mg }_{14} \text{ Si }_5\text{ O }_{24}\)): an ab-initio all-electron investigation. Am Mineral 95:563–573CrossRefGoogle Scholar
  67. Ottonello G, Zuccolini MV, Belmonte D (2010b) The vibrational behavior of silica clusters at the glass transition: ab initio calculations and thermodynamic implications. J Chem Phys 133:104508CrossRefGoogle Scholar
  68. Ottonello G, Attene M, Ameglio D, Belmonte D, Zuccolini MV, Natali M (2013) Thermodynamic investigation of the CaO–Al\(_2\)O\(_3\)–SiO\(_2\) system at high P and T through polymer chemistry and convex-hull techniques. Chem Geol 346:81–92CrossRefGoogle Scholar
  69. Pascale F, Zicovich-Wilson CM, Orlando R, Roetti C, Ugliengo P, Dovesi R (2005) Vibration frequencies of \(\text{ Mg }_3\text{ Al }_2\text{ Si }_3\text{ O }_{12}\) pyrope. An ab initio study with the CRYSTAL code. J Phys Chem B 109:6146–6152CrossRefGoogle Scholar
  70. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  71. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  72. Pisani C, Dovesi R (1980) Exact exchange Hartree–Fock calculations for periodic systems. I. Illustration of the method. Int J Quantum Chem 17:501–516CrossRefGoogle Scholar
  73. Pisani C, Maschio L, Casassa S, Halo M, Schütz M, Usvyat D (2008) Periodic local MP2 method for the study of electronic correlation in crystals: theory and preliminary applications. J Comput Chem 29:2113–2124CrossRefGoogle Scholar
  74. Prencipe M (2002) Ab initio Hartree–Fock study and charge density analysis of beryl \((\text{ Al }_4\text{ Be }_6 \text{ Si }_{12} \text{ O }_{36})\). Phys Chem Miner 29:552–561CrossRefGoogle Scholar
  75. Prencipe M, Nestola F (2005) Quantum-mechanical modeling of minerals at high pressures. The role of the Hamiltonian in a case study: the beryl \((\text{ Al }_4 \text{ Be }_6 \text{ Si }_{12} \text{ O }_{36})\). Phys Chem Miner 32:471–479CrossRefGoogle Scholar
  76. Prencipe M, Nestola F (2007) Minerals at high pressure. Mechanics of compression from quantum mechanical calculations in a case study: the beryl \((\text{ Al }_4 \text{ Be }_6 \text{ Si }_{12} \text{ O }_{36})\). Phys Chem Miner 34:37–52CrossRefGoogle Scholar
  77. Prencipe M, Zupan A, Dovesi R, Aprà E, Saunders VR (1995) Ab initio study of the structural properties of LiF, NaF, KF, LiCl, NaCl, and KCl. Phys Rev B 51:3391–3396CrossRefGoogle Scholar
  78. Prencipe M, Tribaudino M, Nestola F (2003) Charge-density analysis of spodumene \((\text{ LiAlSi }_2 \text{ O }_6)\), from ab initio Hartree–Fock calculations. Phys Chem Miner 30:606–614CrossRefGoogle Scholar
  79. Prencipe M, Pascale F, Zicovich-Wilson CM, Saunders VR, Orlando R, Dovesi R (2004) The vibrational spectrum of calcite (\(\text{ CaCO }_3\)): an ab initio quantum-mechanical calculation. Phys Chem Miner 31:559–564CrossRefGoogle Scholar
  80. Prencipe M, Noel Y, Civalleri B, Roetti C, Dovesi R (2006) Quantum-mechanical calculation of the vibrational spectrum of beryl (\(\text{ Al }_4 \text{ Be }_6 \text{ Si }_{12} \text{ O }_{36}\)) at the \(\varGamma \) point. Phys Chem Miner 33:519–532CrossRefGoogle Scholar
  81. Prencipe M, Noel Y, Bruno M, Dovesi R (2009) The vibrational spectrum of lizardite-1\(T\) [\(\text{ Mg }_3 \text{ Si }_2 \text{ O }_5(\text{ OH })_4\)] at the \(\varGamma \) point: a contribution from an ab initio periodic B3LYP calculation. Am Mineral 94:986–994CrossRefGoogle Scholar
  82. Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl \((\text{ Al }_4\text{ Be }_6 \text{ Si }_{12} \text{ O }_{36})\) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239CrossRefGoogle Scholar
  83. Prencipe M, Mantovani L, Tribaudino M, Bersani D, Lottici PP (2012) The Raman spectrum of diopside: a comparison between ab initio calculated and experimentally measured frequencies. Eur J Mineral 24:457–464CrossRefGoogle Scholar
  84. Prencipe M, Maschio L, Kirtman B, Salustro S, Erba A, Dovesi R (2014a) Raman spectrum of \(\text{ NaAlSi }_2 \text{ O }_6 \text{ jadeite }\). A quantum mechanical simulation. J Raman Spectrosc 45:703–709CrossRefGoogle Scholar
  85. Prencipe M, Bruno M, Nestola F, De La Pierre M, Nimis P (2014b) Toward an accurate ab initio estimation of compressibility and thermal expansion of diamond in the [0, 3000 K] temperature and [0, 30 GPa] pressures ranges, at the hybrid HF/DFT theoretical level. Am Mineral 99:1147–1154CrossRefGoogle Scholar
  86. Sakurai JJ, Napolitano J (2014) Modern quantum mechanics, 2nd edn. Pearson, HarlowGoogle Scholar
  87. Scanavino I, Prencipe M (2013) Ab-initio determination of high-pressure and high-temperature thermoelastic and thermodynamic properties of low-spin \((\text{ Mg }_{\text{1x }}\text{ Fe }_{\text{ x }})\text{ O }\) ferropericlase with \(x\) in the range [0.06, 0.59]. Am Mineral 98:1270–1278CrossRefGoogle Scholar
  88. Scanavino I, Belousov R, Prencipe M (2012) Ab initio quantum-mechanical study of the effects of the inclusion of iron on thermoelastic and thermodynamic properties of periclase (MgO). Phys Chem Miner 39:649–663CrossRefGoogle Scholar
  89. Schwinger J (1951) The theory of quantized fields. Phys Rev 82:914–927CrossRefGoogle Scholar
  90. Slater JC (1967) Quantum theory of molecules and solids, vol I. McGraw Hill, New YorkGoogle Scholar
  91. Stangarone C, Tribaudino M, Prencipe M, Lottici PP (2016) Raman modes in Pbca enstatite (\(\text{ Mg2Si }_2 \text{ O }_6\)): an assignment by quantum mechanical calculation to interpret experimental results. J Raman Spectrosc 47:1247–1258CrossRefGoogle Scholar
  92. Stangarone C, Bottger U, Bersani D, Tribaudino M, Prencipe M (2017) Ab initio simulations and experimental Raman spectra of \(\text{ Mg }_2\text{ SiO }_4\) forsterite to simulate Mars surface environmental conditions. J Raman Spectrosc 48:1528–1535CrossRefGoogle Scholar
  93. Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals—I. Physical properties. Geophys J Int 162:610–632CrossRefGoogle Scholar
  94. Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—II. Phase equilibria. Geophys J Int 184:1180–1213CrossRefGoogle Scholar
  95. Tosoni S, Doll K, Ugliengo P (2006) Hydrogen bond in layered materials: structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chem Mater 18:2135–2143CrossRefGoogle Scholar
  96. Trindle C, Shillady D (2008) Electronic structure modeling: connections between theory and software. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  97. Ungureanu CG, Prencipe M, Cossio R (2010) Ab initio quantum-mechanical calculation of \(\text{ CaCO }_3\) aragonite at high pressure: thermodynamic properties and comparison with experimental data. Eur J Mineral 22:693–701CrossRefGoogle Scholar
  98. Ungureanu CG, Cossio R, Prencipe M (2012) An Ab-initio assessment of thermo-elastic properties of CaCO\(_3\) polymorphs: calcite case. Calphad 37:25–33CrossRefGoogle Scholar
  99. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211CrossRefGoogle Scholar
  100. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116CrossRefGoogle Scholar
  101. Zucchini A, Prencipe M, Comodi P, Frondini F (2012) Ab initio study of cation disorder in dolomite. Calphad 38:177–184CrossRefGoogle Scholar
  102. Zucchini A, Prencipe M, Belmonte D, Comodi P (2017) Ab initio study of the dolomite to dolomite-II high-pressure phase transition. Eur J Mineral 29:227–238CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of TorinoTurinItaly

Personalised recommendations