Advertisement

Rendiconti Lincei. Scienze Fisiche e Naturali

, Volume 29, Issue 4, pp 765–775 | Cite as

Analytical evaluation of relativistic molecular integrals. II: Method of computation for molecular auxiliary functions involved

  • Ali BağcıEmail author
  • Philip E. Hoggan
  • Muzaffer Adak
The Quantum World of Molecules

Abstract

The Slater-type orbital basis with non-integer principal quantum numbers is a physically and mathematically motivated choice for molecular electronic structure calculations in both non-relativistic and relativistic theory. The non-analyticity of these orbitals at \(r=0\), however, requires analytical relations for multi-center integrals to be derived. This is nearly insurmountable. Previous papers by the present authors eliminated this difficulty. Highly accurate results can be achieved by the procedure described in these papers, which place no restrictions on quantum numbers in all ranges of orbital parameters. The purpose of this work is to investigate computational aspects of the formulae given in the previous paper. It is to present a method which helps to increase computational efficiency. In terms of the processing time, evaluation of integrals over Slater-type orbitals with non-integer principal quantum numbers is competitive with those over Slater-type orbitals with integer principal quantum numbers.

Keywords

Slater-type orbitals Multi-center integrals Auxiliary functions 

Notes

Acknowledgements

In this study the author M.A. was supported by the Scientific Research Coordination Unit of Pamukkale University under the project number 2018HZDP036.

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New YorkGoogle Scholar
  2. Allouche A (1974) Les orbitales de Slater à nombre quantique \(<<n>>\) non-entier. Theoretica Chimica Acta 34(1):79–83.  https://doi.org/10.1007/BF00553235 CrossRefGoogle Scholar
  3. Allouche A (1976) Non-integer Slater orbital calculations. Theoretica Chimica Acta 42(4):325–332.  https://doi.org/10.1007/BF00548474 CrossRefGoogle Scholar
  4. Ángyán JG, Gerber I, Marsman M (2006) Spherical harmonic expansion of short-range screened Coulomb interactions. J Phys A Math Gen 39(27):8613–8630.  https://doi.org/10.1088/0305-4470/39/27/005 CrossRefGoogle Scholar
  5. Arfken G (1985) Modified Bessel functions, \(I_{\nu }(x)\) and \(K_{\nu }(x)\). In: Arfken G (ed) Mathematical methods for physicists. Academic Press, San Diego, pp 573–622CrossRefGoogle Scholar
  6. Backeljauw F, Becuwe S, Cuyt A, Deun JV, Lozier DW (2014) Validated evaluation of special mathematical functions. Sci Comput Program 90:2–20.  https://doi.org/10.1016/j.scico.2013.05.006 CrossRefGoogle Scholar
  7. Barnett MP (2002) Digital erosion in the evaluation of molecular integrals. Theor Chem Acc 107(4):241–245.  https://doi.org/10.1007/s00214-002-0322-5 CrossRefGoogle Scholar
  8. Bağcı A, Hoggan PE (2014) Performance of numerical approximation on the calculation of overlap integrals with noninteger Slater-type orbitals. Phys Rev E 89(7):053307.  https://doi.org/10.1103/PhysRevE.89.053307 CrossRefGoogle Scholar
  9. Bağcı A, Hoggan PE (2015a) Benchmark values for molecular three-center integrals arising in the Dirac equation. Phys Rev E 92(4):043301.  https://doi.org/10.1103/PhysRevE.92.043301 CrossRefGoogle Scholar
  10. Bağcı A, Hoggan PE (2015b) Benchmark values for molecular two-electron integrals arising from the Dirac equation. Phys Rev E 91(2):023303.  https://doi.org/10.1103/PhysRevE.91.023303 CrossRefGoogle Scholar
  11. Bağcı A, Hoggan PE (2016) Solution of the Dirac equation using the Rayleigh–Ritz method: flexible basis coupling large and small components. Results for one-electron systems. Phys Rev E 94(1):013302.  https://doi.org/10.1103/PhysRevE.94.013302 CrossRefGoogle Scholar
  12. Bağcı A, Hoggan PE (2018) Analytical evaluation of relativistic molecular integrals. I. Auxiliary functions. Rend Fis Acc Lincei 29(1):191–197.  https://doi.org/10.1007/s12210-018-0669-8 CrossRefGoogle Scholar
  13. Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2008) All-electron four-component Dirac–Kohn–Sham procedure for large molecules and clusters containing heavy elements. Phys Rev B 77(23):233403. https://link.aps.org/doi/10.1103/PhysRevB.77.233403
  14. Bouferguene A (2005) Addition theorem of Slater type orbitals: a numerical evaluation of Barnett–Coulson/Löwdin functions. J Phys A Math Gen 38(13):2899–2916.  https://doi.org/10.1088/0305-4470/38/13/006 CrossRefGoogle Scholar
  15. Chaudhry MA, Zubair SM (2002) On a class of incomplete gamma functions with applications. Chapman & Hall/CRC Publications, Boca RatonGoogle Scholar
  16. Corbató FJ (1956) On the computation of auxiliary functions for two-center integrals by means of a high-speed computer. J Chem Phys 24(2):452–453.  https://doi.org/10.1063/1.1742496 CrossRefGoogle Scholar
  17. Condon EU, Shortley GH (1935) The theory of atomic spectra. Cambridge University Press, CambridgeGoogle Scholar
  18. Cuyt A, Becuwe S (2006) Towards reliable software for the evaluation of a class of special functions. In: Iglesias A, Takayama N (eds) Mathematical Software-ICMS 2006. ICMS 2006. Lecture notes in computer science, vol 4151. Springer, HeidelbergGoogle Scholar
  19. Esteban MJ, Séré E (1999) Solutions of the Dirac–Fock equations for atoms and molecules. Commun Math Phys 203(3):499–530.  https://doi.org/10.1007/s002200050032 CrossRefGoogle Scholar
  20. Gautschi W (1999) A note on the recursive calculation of incomplete gamma functions. ACM Trans Math Softw (TOMS) 25(1):101–107.  https://doi.org/10.1145/305658.305717 CrossRefGoogle Scholar
  21. Geller M (1962) Two-center, nonintegral, Slater-orbital calculations: integral formulation and application to the hydrogen molecule-ion. J Chem Phys 36(9):2424–2428.  https://doi.org/10.1063/1.1732902 CrossRefGoogle Scholar
  22. Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series and products, 4th edn. Academic Press, New YorkGoogle Scholar
  23. Grant IP (2007) Relativistic quantum theory of atoms and molecules. Springer, New YorkCrossRefGoogle Scholar
  24. Grant IP (2010) Relativistic atomic structure: past, present and future. J Phys B At Mol Opt Phys 43(7):074033. http://stacks.iop.org/0953-4075/43/i=7/a=074033 CrossRefGoogle Scholar
  25. Greengard P, Rokhlin V (2018) An algorithm for the evaluation of the incomplete gamma function. Adv Comput Math.  https://doi.org/10.1007/s10444-018-9604-x (accepted)CrossRefGoogle Scholar
  26. Guseinov II (1970) Analytical evaluation of two-centre Coulomb, hybrid and one-electron integrals for Slater-type orbitals. J Phys B At Mol Phys 3(111):1399–1412. http://stacks.iop.org/0022-3700/3/i=11/a=001 CrossRefGoogle Scholar
  27. Guseinov II (1995a) On the evaluation of multielectron molecular integrals over Slater-type orbitals using binomial coefficients. J Mol Struct THEOCHEM 335(1):17–20.  https://doi.org/10.1016/0166-1280(94)04101-W CrossRefGoogle Scholar
  28. Guseinov II (1995b) Spherically symmetrical properties of two-center overlap integrals over arbitrary atomic orbitals and translation coefficients for Slater-type orbitals. J Mol Struct THEOCHEM 343:173–176.  https://doi.org/10.1016/0166-1280(95)90551-0 CrossRefGoogle Scholar
  29. Guseinov II, Ertürk M (2009) Use of noninteger \(n\)-Slater type orbitals in combined Hartree–Fock–Roothaan theory for calculation of isoelectronic series of atoms Be to Ne. Int J Quantum Chem 109(2):176–184.  https://doi.org/10.1002/qua.21760 CrossRefGoogle Scholar
  30. Guseinov II, Ertürk M (2012) Use of noninteger \(n\)-generalized exponential type orbitals with hyperbolic cosine in atomic calculations. Int J Quantum Chem 112(6):1559–1565.  https://doi.org/10.1002/qua.23133 CrossRefGoogle Scholar
  31. Guseinov II, Mamedov BA (1999) Computation of molecular integrals over Slater type orbitals I. Calculations of overlap integrals using recurrence relations. J Mol Struct THEOCHEM 465(1):1–6.  https://doi.org/10.1016/S0166-1280(98)00129-8 CrossRefGoogle Scholar
  32. Guseinov II, Mamedov BA (2002) Evaluation of overlap integrals with integer and noninteger \(n\) Slater-type orbitals using auxiliary functions. Mol Model Annu 8(9):272–276.  https://doi.org/10.1007/s00894-002-0098-5 CrossRefGoogle Scholar
  33. Guseinov II, Mamedov BA (2007) On the accurate evaluation of overlap integrals over Slater type orbitals using analytical and recurrence relations. Zeitschrift für Naturforschung A 62(9):467–470.  https://doi.org/10.1515/zna-2007-0901 CrossRefGoogle Scholar
  34. Harris FE (2004) Efficient evaluation of the molecular auxiliary function \(B_n\) by downward recursion. Int J Quantum Chem 100(2):142–145.  https://doi.org/10.1002/qua.10812 CrossRefGoogle Scholar
  35. Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. Cambridge University Press, CambridgeGoogle Scholar
  36. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540–3544.  https://doi.org/10.1063/1.1383587 CrossRefGoogle Scholar
  37. Koga T, Kanayama K (1997a) Noninteger principal quantum numbers increase the efficiency of Slater-type basis sets: heavy atoms. Chem Phys Lett 266(1):123–129.  https://doi.org/10.1016/S0009-2614(96)01500-X CrossRefGoogle Scholar
  38. Koga T, Kanayama K (1997b) Noninteger principal quantum numbers increase the efficiency of Slater-type basis sets: singly charged cations and anions. J Phys B At Mol Opt Phys 30(7):1623–1631.  https://doi.org/10.1088/0953-4075/30/7/004 CrossRefGoogle Scholar
  39. Koga T, Kanayama K, Thakkar AJ (1997) Noninteger principal quantum numbers increase the efficiency of Slater-type basis sets. Int J Quantum Chem 62(1):1–11.  https://doi.org/10.1002/(SICI)1097-461X(1997)62:1<1::AID-QUA1>3.0.CO;2-#
  40. Koga T, García de la Vega JM, Miguel B (1998) Double-zeta Slater-type basis sets with noninteger principal quantum numbers and common exponents. Chem Phys Lett 283(1):97–101.  https://doi.org/10.1016/S0009-2614(97)01322-5 CrossRefGoogle Scholar
  41. Koga T, Shimazaki T, Satoh T (2000) Noninteger principal quantum numbers increase the efficiency of Slater-type basis sets: double-zeta approximation. J Mol Struct THEOCHEM 496(1):95–100.  https://doi.org/10.1016/S0166-1280(99)00176-1 CrossRefGoogle Scholar
  42. Kutzelnigg W (2012) Solved and unsolved problems in relativistic quantum chemistry. Chem Phys 395:16–34.  https://doi.org/10.1016/j.chemphys.2011.06.001 CrossRefGoogle Scholar
  43. Lee YS, McLean AD (1982) Relativistic effects on Re and De in AgH and AuH from all-electron Dirac–Hartree–Fock calculations. J Chem Phys 76(1):735–736.  https://doi.org/10.1063/1.442680 CrossRefGoogle Scholar
  44. Lewin M, Séré E (2014) Spurious modes in Dirac calculations and how to avoid them. In: Bach V, Site LD (eds) Many-electron approaches in physics, chemistry and mathematics. Oxford University Press, Oxford, pp 31–52.  https://doi.org/10.1007/978-3-319-06379-9-2 CrossRefGoogle Scholar
  45. Mulliken RS, Rieke CA, Orloff D, Orloff H (1949) Formulas and numerical tables for overlap integrals. J Chem Phys 17(12):1248–1267.  https://doi.org/10.1063/1.1747150 CrossRefGoogle Scholar
  46. NIST Digital Library of Mathematical Functions (2018) Recurrence relations and derivatives. In: Olver FWJ, Daalhuis Olde AB, Lozier DW, Schneider BI, Boisvert RF, Clark CW, Miller BR, Saunders BV (eds) Incomplete gamma and related functions. https://dlmf.nist.gov/8.8. Release 1.0.18
  47. Parr RG, Joy HW (1957) Why not use Slater orbitals of nonintegral principal quantum number? J Chem Phys 26(2):424.  https://doi.org/10.1063/1.1743314 CrossRefGoogle Scholar
  48. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. Mc-Graw Hill, New YorkGoogle Scholar
  49. Quiney HM, Belanzoni P, Sgamellotti A (2002) Evaluation of the Coulomb energy in relativistic self-consistent-field theory. Theor Chem Acc 108(2):113–123.  https://doi.org/10.1007/s00214-002-0369-3 CrossRefGoogle Scholar
  50. Richard ES, Stephen H (1984) Kinetic balance: a partial solution to the problem of variational safety in Dirac calculations. J Chem Phys 81(4):1910–1918.  https://doi.org/10.1063/1.447865 CrossRefGoogle Scholar
  51. Rico JF, López R, Ramirez G, Ema I (2013) Repulsion integrals involving Slater-type functions and Yukawa potential. Theor Chem Acc 132(1):1304–1312.  https://doi.org/10.1007/s00214-012-1304-x CrossRefGoogle Scholar
  52. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23(2):69–89.  https://doi.org/10.1103/RevModPhys.23.69 CrossRefGoogle Scholar
  53. Santos FD (1973) Finite range approximations in direct transfer reactions. Nucl Phys A 212(2):341–364.  https://doi.org/10.1016/0375-9474(73)90568-X CrossRefGoogle Scholar
  54. Seth M, Ziegler T (2012) Range-separated exchange functionals with Slater-type functions. J Chem Theory Comput 8(3):901–907.  https://doi.org/10.1021/ct300006h CrossRefGoogle Scholar
  55. Slater JC (1930) Atomic shielding constants. Phys Rev A 36(1):57–64. https://link.aps.org/doi/10.1103/PhysRev.36.57 CrossRefGoogle Scholar
  56. Temme NM (1994) Computational aspects of incomplete gamma functions with large complex parameters. In: Zahar RVM (ed) Approximation and computation: a festschrift in honor of Walter Gautschi: proceedings of the Purdue conference, December 2–5, 1993. Birkhäuser Boston, Boston, pp 551–562.  https://doi.org/10.1007/978-1-4684-7415-2-37 CrossRefGoogle Scholar
  57. Temme NM (2011) Special statistical distribution functions. In: Temme NM (ed) Special functions. Wiley-Blackwell, Hoboken, pp 288–297.  https://doi.org/10.1002/9781118032572.ch11 CrossRefGoogle Scholar
  58. Weatherford CA, Red E, Joseph D, Hoggan PE (2006) Poisson’s equation solution of Coulomb integrals in atoms and molecules. Mol Phys 104(9):1385–1389.  https://doi.org/10.1080/00268970500462248 CrossRefGoogle Scholar
  59. Weniger EJ (2000) Addition theorems as three-dimensional Taylor expansions. Int J Quantum Chem 76(2):280–295. https://doi.org/10.1002/(SICI)1097- 461X(2000)76:2<280::AID-QUA16>3.0.CO;2-CGoogle Scholar
  60. Weniger EJ (2002) Addition theorems as three-dimensional Taylor expansions. II. B functions and other exponentially decaying functions. Int J Quantum Chem 90(1):92–104.  https://doi.org/10.1002/qua.948 CrossRefGoogle Scholar
  61. Weniger EJ (2008) On the analyticity of Laguerre series. J Phys A Math Theor 41(42):425207.  https://doi.org/10.1088/1751-8113/41/42/425207 CrossRefGoogle Scholar
  62. Yukawa H (1935) On the interaction of elementary particles. I. In: Proceedings of the physico-mathematical society of Japan. 3rd series, vol 17, pp 48–57.  https://doi.org/10.11429/pmsj1919.17.0-48

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesPamukkale UniversityDenizliTurkey
  2. 2.Institute Pascal, UMR 6602 CNRSUniversity Blaise PascalAubiere CedexFrance

Personalised recommendations