Advertisement

Rendiconti Lincei. Scienze Fisiche e Naturali

, Volume 29, Issue 3, pp 525–541 | Cite as

Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea

  • Roberto Danovaro
Changes and Crisis in the Mediterranean

Abstract

Deep sea is the largest and likely the most biologically diverse ecosystem of the world, but it is also the most unknown. The Mediterranean Sea (< 1% of the ocean surface and contains only the 0.3% of its volume) is a hot spot of marine biodiversity containing ca 7.5% of the world marine biodiversity, associated with a multitude of habitats spreading from the coast to its dark portion (e.g., coral banks, seamounts, canyons, and hydrothermal vents). Its deep-sea ecosystems are increasingly subjected to direct anthropogenic impacts (including overfishing, chemical pollution, dumping, litter, and plastics), which are often over-imposed to the increasing effects of global change. Here, are illustrated the expected impacts of shifts in the main variables such as temperature, food supply, pH, and oxygen on the deep Mediterranean Sea ecosystems. One of the most consequences is related to shifts in the quality and quantity of the inputs of organic matter to the deep seafloor. The deep Mediterranean Sea is far more oligotrophic than other oceans at equal depths, and although deep-sea biota reacts to food shortage by increasing their efficiency in its use, a decrease in food availability can have dramatic effects on its food webs. The deep Mediterranean Sea is showing a clear rise of deep-water temperatures. In the last decades, deep-water warming is accelerating at unprecedented rates, causing a significant shift in biodiversity even for variations in the order of 0.1 °C. Higher temperatures increase deep-sea metabolism, thus exacerbating the effects of food limitation. Moreover, ocean acidification reduces the calcification capacity of corals and alters their metabolism. Although it can be expected that increasing temperatures might increase the potential spread of oxygen minimum zone, so far, only hypoxic events were reported in Mediterranean Sea. The analysis of potential ecosystem vulnerability indicates that the ecosystems that are most sensitive to global change are deep-water coral systems and deep-sea plains. In addition, deep-sea canyons are also likely increasingly subjected to physical disturbance as a result of the increase in the frequency and intensity of climate-driven episodic events. Available information also suggests that biodiversity and ecosystem functioning of the deep Mediterranean Sea is undergoing dramatic changes, which result in accelerated organic matter biogeochemical cycling, miniaturization of the organisms’ size, increased metabolism, dominance of the microbial components, and mortality rates of deep-sea biota. Given the high sensitivity of the Mediterranean Sea to global change in comparison with other oceanic regions, and the vulnerability of its deep-sea habitats/ecosystems, specific policy measures are needed to protect its biodiversity, restore damaged habitats, and increase deep-sea ecosystems resistance and resilience to the ongoing impacts of global change.

Keywords

Global change Deep Mediterranean Sea Deep-sea biology Ecosystem vulnerability 

Notes

Acknowledgements

This study was conducted within the frame of the projects MERCES (Marine Ecosystem Restoration in Changing European Seas), funded by the European Union’s Horizon 2020 research and innovation program (Grant agreement no. 689518), and IDEM (Implementation of the MSFD to the Deep Mediterranean Sea) (DG ENV Grant agreement no. 11.0661/2017/750680/SUB/EN VC2).

References

  1. Acosta J, Ancochea E, Canals M, Huertas MJ, Uchupi E (2004) Early Pleistocene volcanism in the Emile Baudot seamount, Balearic promontory (western Mediterranean Sea). Mar Geol 207:247–257Google Scholar
  2. Allen SE, Durrieu de Madron X (2009) A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci 5:607–620.  https://doi.org/10.5194/os-5-607-2009 Google Scholar
  3. Armstrong CW, Foley N, Tinch R, van den Hove S (2012) Services from the deep: steps towards valuation of deep sea goods and services. Ecosyst Serv 2:2–13Google Scholar
  4. Balvanera P, Siddique I, Dee l, Paquette A, Isbell F, Gonzalez A, Byrnes I, O’Connor MI, Hungate BA, Griffin JM (2014) Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64:49–57.  https://doi.org/10.1093/biosci/bit003
  5. Barbier EB, Moreno Mateos D, Rogers AD et al (2014) Protect the deep sea. Nature 505:475–477Google Scholar
  6. Barkmann J, Glenk K, Keil A, Leemhuis C, Dietrich N, Gerold G, Marggraf R (2008) Confronting unfamiliarity with ecosystem functions: the case for an ecosystem service approach to environmental valuation with stated preference methods. Ecol Econ 65:48–62Google Scholar
  7. Bell JB, Woulds C, Van Oevelen D (2017) Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling. Sci Rep 7:12025Google Scholar
  8. Bethoux JP, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662Google Scholar
  9. Bianchelli S, Gambi C, Pusceddu A, Danovaro R (2008) Trophic conditions and meiofaunal assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chem Ecol 24:101–109Google Scholar
  10. Bianchi CN (2007) Biodiversity issues for the forthcoming Mediterranean Sea. Hydrobiologia 580:7–21Google Scholar
  11. Bo M, Canese S, Spaggiari C, Pusceddu A, Bertolino M, Angiolillo M, Giusti M, Loreto MF, Salvati E, Greco S, Bavestrello G (2012) Deep Coral Oases in the South Tyrrhenian Sea. PLoS One 7:e49870Google Scholar
  12. Bo M, Cerrano C, Canese S, Salvati E, Angiolillo M, Santangelo G, Bavestrello G (2014) The coral assemblages of an off-shore deep Mediterranean rocky bank (NW Sicily, Italy). Mar Ecol 35:332–342Google Scholar
  13. Boero F, Féral JP, Azzurro E, Cardin V, Riedel B, Despalatovi M, Munda I, Moschella P, Zaouali J, Fonda Umani S, Theocharis A, Wiltshire K, Briand F (2008) Climate warming and related changes in Mediterranean marine biota. In: Briand F (ed) Climate Warming and Related Changes in Mediterranean Marine Biota: CIESM Workshop Monographs No. 35. Monaco, pp 5–21Google Scholar
  14. Boero F, Carlton J, Briand F et al (2013) Marine extinctions. Patterns and processes. CIESM Workshop Monogr 45:5–19Google Scholar
  15. Bongiorni L, Mea M, Gambi C, Pusceddu A, Taviani M, Danovaro R (2010) Deep-water scleractinian corals promote higher biodiversity in deep-sea meiofaunal assemblages along continental margins. Biol Cons 143:1687–1700Google Scholar
  16. Bramanti L et al (2013) Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Glob Change Biol 19:1897–1908Google Scholar
  17. Brankart JM, Pinardi N (2001) Abrupt cooling of the Mediterranean Levantine Intemediate water at the Beginning of the 1980s: observational evidence and model simulation. J Phys Oceanogr 31:89–114Google Scholar
  18. Brazelton W (2017) Hydrothermal vents. Curr Biol 27:R450–R452Google Scholar
  19. Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J (2018) Declining oxygen in the global ocean and coastal waters. Science 359(6371)Google Scholar
  20. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19(14):R602–R614Google Scholar
  21. Brooke S, Ross SW, Bane JM, Seim HE, Young CM (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep Sea Res Part II 92:240–248Google Scholar
  22. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789Google Scholar
  23. Byrne RH, Mecking S, Feely RA, Liu X (2010) Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys Res Lett 37:L02601.  https://doi.org/10.1029/2009gl040999 Google Scholar
  24. Carney RS (2005) Zonation of deep biota on continental margins. Oceanogr Mar Biol Annu Rev 43:211–278Google Scholar
  25. Cartes JE, Maynou F, Fanelli E, López-Pérez C, Papiol V (2015) Changes in deep-sea fish and crustacean communities at 1000–2200 m in the Western Mediterranean after 25 years: relation to hydro-climatic conditions. J Mar Syst 143:138–153Google Scholar
  26. Catarino D, Knutsen H, Veríssimo A, Olsen EM, Jorde PE, Menezes G et al (2015) The Pillars of Hercules as a bathymetric barrier to gene flow promoting isolation in a global deep-sea shark (Centroscymnus coelolepis). Mol Ecol 24(24):6061–6079Google Scholar
  27. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3:284–293Google Scholar
  28. Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R (2013) Red coral extinction risk enhanced by ocean acidification. Sci Rep 3:1457Google Scholar
  29. Cheung WWL, Sarmiento JL, Dunne J, Frölicher TL, Lam VWY, Palomares MLD, Watson R, Pauly D (2013) Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat Clim Change 3:254–258Google Scholar
  30. Cocchi L, Passaro S, Caratori Tontini F, Ventura G (2017) Volcanism in slab tear faults is larger than in island arcs and back-arcs. Nat Commun.  https://doi.org/10.1038/s41467-017-01626-w Google Scholar
  31. Coleman D, Ballard R (2001) A highly concentrated region of cold hydrocarbon seeps in the southeastern Mediterranean Sea. Geo Mar Lett 21:162–167Google Scholar
  32. Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8):e11842Google Scholar
  33. Coma R, Ribes M, Gili JA, Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15(11):448–453Google Scholar
  34. Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA 106(15):6176–6181Google Scholar
  35. Company JB, Puig P, Sardà F, Palanques A, Latasa M, Scharek R (2008) Climate influence on deep sea populations. PLoS ONE 3:e1431.  https://doi.org/10.1371/journal.pone.0001431 Google Scholar
  36. Corselli C, Basso D (1996) First evidence of benthic communities based on chemosynthesis on the Napoli mud volcano (Eastern Mediterranean). Mar Geol 132:227–239Google Scholar
  37. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’NeillR V, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260Google Scholar
  38. Dando PR, Stüben D, Varnavas SP (1999) Hydrothermalism in the Mediterranean sea. Prog Oceanogr 44:333–367Google Scholar
  39. Danovaro R, Dell’Anno A, Fabiano M, Pusceddu A, Tselepides A (2001) Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends Ecol Evol 16:505–510Google Scholar
  40. Danovaro R, Manini E, Dell’Anno A (2002) Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Appl Envir Microbiol 68:1468–1472Google Scholar
  41. Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep sea. Ecol Lett 7:821–828Google Scholar
  42. Danovaro R, Corinaldesi C, Dell’Anno A, Fabiano M, Corselli C (2005) Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environ Microbiol 7(4):586–592Google Scholar
  43. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2008a) The first metazoa living in permanently anoxic conditions. BMC Biol 8(1):30Google Scholar
  44. Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, Vincx M, Gooday AJ (2008b) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8Google Scholar
  45. Danovaro R, Canals M, Gambi C, Heussner S, Lampadariou N, Vanreusel A (2009) Exploring Benthic biodiversity patterns and hotspots on European margin slopes. Oceanography 22:16–25Google Scholar
  46. Danovaro R, Company JB, Corinaldesi C et al (2010) Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS One 5(8):e11832Google Scholar
  47. Danovaro R, Snelgrove PVR, Tyler P (2014) Challenging the paradigms of deep-sea ecology. Trends Ecol Evol 29:465–475Google Scholar
  48. Danovaro R, Carugati L, Marco B, Cahill AE, Spinola SDC, Chenuil A et al (2016a) Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front Mar Sci 3:213Google Scholar
  49. Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Pusceddu A, Neves RC, Reinhardt Møbjerg Kristensen RM (2016b) The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biol 14(1):43Google Scholar
  50. Danovaro R, Molari M, Corinaldesi C, Dell’Anno A (2016c) Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Sci Adv 2:e1500961Google Scholar
  51. Danovaro R, Aguzzi J, Fanelli E, Billett D, Gjerde K, Jamieson A et al (2017a) An ecosystem-based deep-ocean strategy. Science 355:452–454Google Scholar
  52. Danovaro R, Corinaldesi C, Dell’Anno A, Snelgrove PV (2017b) The deep-sea under global change. Curr Biol 27:R461–R465Google Scholar
  53. Davies AJ, Roberts JM, Hall-Spencer J (2007) Preserving deep-sea natural heritage: emerging issues in offshore conservation and management. Biol Cons 138:299–312Google Scholar
  54. Davies JS, Stewart HA, Narayanaswamy BE, Jacobs C, Spicer J, Golding N et al (2015) Benthic assemblages of the Anton Dohrn Seamount (NE Atlantic): defining deep-sea biotopes to support habitat mapping and management efforts with a focus on vulnerable marine ecosystems. PLoS One 10:e0124815Google Scholar
  55. De Juan S, Lleonart J (2010) A conceptual framework for the protection of vulnerable habitats impacted by fishing activities in the Mediterranean high seas. Ocean Coast Manag 53:717–723Google Scholar
  56. De Leo F, Smith C, Rowden A, Bowden D, Clark M (2010) Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proc R Soc B Biol Sci 2783–2792Google Scholar
  57. Della Tommasa L, Danovaro R, Belmonte G, Boero F (2004) Resting stage in the biogenic fraction of surface sediments from the deep Mediterranean Sea. Sci Mari 68(S1):103–111Google Scholar
  58. Deming JW, Carpenter SD (2008) Factors influencing benthic bacterial abundance, biomass, and activity on the northern continental margin and deep basin of the Gulf of Mexico. Deep Sea Res Part II 55(24–26):2597–2606Google Scholar
  59. Deutsch C, Ferrel A, Seibel B, Pörtner HO, Huey RB (2015) Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–1135Google Scholar
  60. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929Google Scholar
  61. Duineveld G, Lavaleye MSS, Berghuis EM, de Wilde P (2001) Activity and composition of the benthic fauna in the Whittard Canyon and the adjacent continental slope (NE Atlantic). Oceanol Acta 24:69–83Google Scholar
  62. Dunlop KM, van Oevelen D, Ruhl HA et al (2016) Carbon cycling in the deep eastern North Pacific benthic food web: investigating the effect of organic carbon input. Limnol Oceanogr 61:1956–1968Google Scholar
  63. Durrieu de Madron X et al (2000) Particulate matter and organic carbon budgets for the Gulf of Lions (NW Mediterranean). Oceanol Acta 23:717–729Google Scholar
  64. Emig CC, Geistdoerfer P (2004) The Mediterranean deep-sea fauna: historical evolution, bathymetric variations and geographical changes. Carnets Geol Madrid 4(A01):10.  https://doi.org/10.4267/2042/3230
  65. Fabri MC, Pedel L, Beuck L, Galgani F, Hebbeln D, Freiwald A (2014) Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: spatial distribution and anthropogenic impacts. Deep Sea Res Part II: Top Stud Oceanog 104:184–207Google Scholar
  66. Fanelli E, Delbono I, Ivaldi R, Pratellesi M, Cocito S, Peirano A (2017) Cold-water coral Madrepora oculata in the eastern Ligurian Sea (NW Mediterranean): historical and recent findings. Aquatic Conserv: Mar Freshw Ecosyst 27:965–975Google Scholar
  67. Flecha S et al (2015) Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin. Sci Rep 5:16770Google Scholar
  68. Flexas MM, Durrieu de Madron X, Garcia MA, Canals M, Arnau P (2002) Flow variability in the Gulf of Lions during the MATER HFF experiment (March–May 1997). J Mar Syst 33–34:197–214Google Scholar
  69. Flexas MM, Boyer DL, Espino M, Puigdefabregas J, Rubio A, Company JB (2008) Circulation over a submarine canyon in the NW Mediterranean. J Geophys Res Oceans 113:C12002Google Scholar
  70. Fohrmann H, Backhaus JO, Blaume F, Rumohr J (1998) Sediments in bottom arrested gravity plumes: numerical case studies. J Phys Oceanogr 28:2250–2274Google Scholar
  71. Font J, Puig P, Salat J, Palanques A, Emelianov M (2007) Sequence of hydrographic changes in NW Mediterranean deep water due to the exceptional winter of 2005. Sci Mar 71:339–346Google Scholar
  72. Galil B, Zibrowius H (1998) First Benthos samples from Eratosthenes Seamount Eastern Mediterranean. Sencken Marit 28:111–121Google Scholar
  73. Gambi C, Lampadariou N, Danovaro R (2010) Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: importance of the rare taxa and anomalies in the deep Mediterranean Sea. Adv Oceanogr Limnol 1(1):167–197Google Scholar
  74. Gambi C, Corinaldesi C, Dell’Anno A, Pusceddu A, D’Onghia G, Covazzi-Harriague A, Danovaro R (2017) Functional response to food limitation can reduce the impact of global change in the deep-sea benthos. Global Ecol Biogeogr 26:1008–1021Google Scholar
  75. Hare CE, Leblanc K, Di Tullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins DA (2007) Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar Ecol Prog Ser 352:9–16Google Scholar
  76. Harris PT, Whiteway T (2011) Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Mar Geol 285:69–86Google Scholar
  77. Hassoun AER et al (2015) Acidification of the Mediterranean Sea from anthropogenic carbon penetration. Deep Sea Res Part I: Oceanogr Res Papers 102:1–15Google Scholar
  78. Hennige SJ, Wicks LC, Kamenos NA, Bakker DC, Findlay HS, Dumousseaud C, Roberts JM (2014) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep sea Res Part II: Top Stud Oceanogr 99:27–35Google Scholar
  79. Henry LA, Stehmann MFW, De Clippele L, Findlay HS, Golding N, Roberts JM (2016) Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni. J Fish Biol 89:1473–1481Google Scholar
  80. Heussner S, Durrieu de Madron X, Calafat A, Canals M, Carbonne J, Delsaut N, Saragoni G (2006) Spatial and temporal variability of downward particle fluxes on a continental slope: lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Mar Geol 234:63–92Google Scholar
  81. Jones DOB, Yool A, We LC, Henson SA, Ruhl HA, Watson RA, Gehlen M (2014) Global reductions in seafloor biomass in response to climate change. Global Change Biol 20:1861–1872Google Scholar
  82. Keeling RE, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199–229Google Scholar
  83. Kitchingman A, Lai S, Morato T, Paulay D (2007) How many seamounts are there and where are they located?’. In: Pitcher TJ et al (eds) Seamounts: ecology, fisheries and conservation. Blackwell Publishing, Oxford, pp 26–40Google Scholar
  84. Kopf (2002) Significance of mud volcanism. Rev Geophys 40(2):1005.  https://doi.org/10.1029/2000RG000093 Google Scholar
  85. Koslow JA, Goericke R, Lara-Lopez A, Watson W (2011) Impact of declining intermediate-water oxygen on deepwater fishes in the California Current. Mar Ecol Prog Ser 436:207–218Google Scholar
  86. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434Google Scholar
  87. Krom MD, Kress N, Brenner S, Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean. Limnol Oceanogr 36:424–432Google Scholar
  88. Lacombe H, Tchernia P (1972) Caractères hydrologiques et circulation des eaux en Méditerranée. In: Stanley DJ (ed) The Mediterranean Sea. Dowden, Hutchinson and Ross, Stroudsberg, pp 26–36Google Scholar
  89. Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C et al (2007) Historical overview of climate change. Cambridge University Press, Cambridge, pp 95–127Google Scholar
  90. Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Perez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260Google Scholar
  91. Levin LA, Le Bris N (2015) The deep ocean under climate change. Science 350:766–768Google Scholar
  92. Levin LA, Sibuet M (2012) Understanding continental margin biodiversity: a new imperative. Ann Rev Mar Sci 4:79–112Google Scholar
  93. Liquete C, Piroddi C, Drakou EG, Gurney L, Katsanevakis S, Charef A, Egoh B (2013) Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS One 8:e67737Google Scholar
  94. Martin J, Palanques A, Puig P (2006) Composition and variability of downward particulate matter fluxes in the Palamo’s submarine canyon (NW Mediterranean). J Mar Syst 60:75–97Google Scholar
  95. Maynou F, Cartes JE (2012) Effects of trawling on fish and invertebrates from deep-sea coral facies of Isidella elongata in the western Mediterranean. J Mar Biol Assoc 92:1501–1507Google Scholar
  96. McClain CR, Allen AP, Tittensor DP, Rex MA (2012) Energetics of life on the deep seafloor. Proc Natl Acad Sci USA 109:15366–15371Google Scholar
  97. MEA. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being, synthesis. Island Press, Washington (DC)Google Scholar
  98. Mengerink KJ, Van Dover CL, Ardron J, Baker M, Escobar- Briones E, Gjerde K, Koslow JA, Ramirez-Llodra E, Lara- Lopez A, Squires D, Sweetman AK, Levin LA (2014) A call for deep-ocean stewardship. Science 344:696–698Google Scholar
  99. Mora C, Aburto-Oropeza O, Ayala Bocos A, Ayotte PM, Banks S, Bauman AG et al (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606.  https://doi.org/10.1371/journal.pbio.1000606 Google Scholar
  100. Mora C, Wei CL, Rollo A, Amaro T, Baco AR, Billett D et al (2013) Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol 11:e1001682Google Scholar
  101. Morri C, Bianchi CN, Cocito S, Peirano A, De Biase AM, Aliani S et al (1999) Biodiversity of marine sessile epifauna at an Aegean island subject to hydrothermal activity: milos, eastern Mediterranean Sea. Mar Biol 135:729–739Google Scholar
  102. Naumann MS, Orejas C, Ferrier-Pages C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part II 99:36–41Google Scholar
  103. Norse EA, Brooke S, Cheung WWL, Clark MR, Ekeland I, Froese R, Gjerde KM, Haedrich RL, Heppell SS, Morato T, Morgan LE, Pauly D, Sumaila R, Watson R (2012) Sustainability of deep-sea fisheries. Mar Pol 36:307–320Google Scholar
  104. Nykjaer L (2009) Mediterranean Sea surface warming 1985–2006. Clim Res 39:11–17Google Scholar
  105. Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686Google Scholar
  106. Painter SC, Tsimplis M (2003) Temperature and salinity trends in the upper waters of the Mediterranean Sea as determined from the MEDATLAS dataset. Cont Sci Res 23:1507–1522Google Scholar
  107. Palanques A, Durrieu de Madron X, Puig P, Fabres J, Guillen J, Calafat A, Canals M, Bonnin J (2006) Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Mar Geol 234:43–61Google Scholar
  108. Palmiéri J et al (2015) Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12:781–802Google Scholar
  109. Philippart CJ, Anadòn R, Danovaro R, Dippner JW, Drinkwater KF, Hawkins SJ, Oguz T, O’Sullivan G, Reid PC (2011) Impacts of climate change on European marine ecosystems: observations, expectations and indicators. J Exp Mar Biol Ecol 400:52–69Google Scholar
  110. Pop Ristova P, Wenzhöfer F, Ramette A, Felden J, Boetius A (2015) Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea). ISME J 9:1306–1318.  https://doi.org/10.1038/ismej.2014.217 Google Scholar
  111. Prince ED, Goodyear CP (2006) Hypoxia-based habitat compression of tropical pelagic fishes. Fish Oceanogr 15:451–464Google Scholar
  112. Psarra S, Tselepides A, Ignatiades L (2000) Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): seasonal and interannual variability. Progr Oceanogr 46:187–204Google Scholar
  113. Purkey SG, Johnson GC (2010) Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Clim 23(4):6336–6351Google Scholar
  114. Pusceddu A, Gambi C, Zeppilli D, Bianchelli S, Danovaro R (2009) Organic matter composition, meiofauna and nematode biodiversity in deep-sea sediments surrounding two seamounts. Deep Sea Res II 56:755–762Google Scholar
  115. Pusceddu A, Mea M, Canals M, Heussner S, Durrieu De Madron X, Sanchez-Vidal A, Bianchelli S, Corinaldesi C, Dell’Anno A, Thomsen L, Danovaro R (2013) Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic conditions and meiofaunal biodiversity. Biogeosciences 10(4):2659Google Scholar
  116. Pusceddu A, Carugati L, Gambi C, Mienert J, Petani B, Sanchez-Vidal A, Canals M, Hessuner S, Danovaro R (2016) Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago. Deep Sea Res Part 1 Oceanogr Res Pap 107:48–58Google Scholar
  117. Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR et al (2011) Man and the last great wilderness: human impact on the deep sea. PLoS One 6:e22588Google Scholar
  118. Rex MA, Etter RJ, Morris JS, Crouse J, McClain CR, Johnson NA, Stuart CT, Deming JW, Thies R, Avery R (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar Ecol Progr Ser 317:1–8Google Scholar
  119. Rivetti I, Fraschetti S, Lionello P, Zambianchi E, Boero F (2014) Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS One 9(12):e115655Google Scholar
  120. Rixen M, Beckers J, Levitus S, Antonov J, Boyer T, Maillard C, Fichaut M, Balopoulos E, Iona S, Dooley H, Garcia M, Manca B, Giorgetti A, Manzella G, Mikhailov N, Pinardi N, Zavatarelli M (2005) The Western Mediterranean Deep Water: a proxy for climate change. Geophys Res Lett 32(12):L12608Google Scholar
  121. Roberts JM, Cairns SD (2014) Cold-water corals in a changing ocean. Curr Opin Environ Sustain 7:118–126Google Scholar
  122. Robinson LF, Adkins JF, Frank N, Gagnon AC, Prouty NG, Roark EB, van de Flierdt T (2014) The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography. Deep Sea Res Part II: Top Stud Oceanogr 99:184–198Google Scholar
  123. Rogers AD (2015) Environmental Change in the Deep Ocean. Annu Rev Environ Resour 40:1–38Google Scholar
  124. Ruhl HA, Smith KL Jr (2004) Shifts in deep-sea community structure linked to climate and food supply. Science (New York, N.Y.) 305:513–515Google Scholar
  125. Sánchez F, Serrano A, Parra S, Ballesteros M, Cartes JE (2008) Habitat characteristics as determinant of the structure and spatial distribution of epibenthic and demersal communities of Le Danois Bank (Cantabrian Sea, N. Spain). J Mar Syst 72:64–86Google Scholar
  126. Sánchez F, González-Pola C, Druet M, García-Alegre A, Acosta J, Cristobo J (2014) Habitat characterization of deep-water coral reefs in La Gaviera canyon (Avilés Canyon System, Cantabrian Sea). Deep Sea Res Part 2 Top Stud Oceanog 106:118–140Google Scholar
  127. Sanchez-Vidal A, Pasqual C, Kerherve P, Heussner S, Calafat A, Palanques A, Durrieu de Madron X, Canals M, Puig P (2009) Across margin export of organic matter by cascading events traced by stable isotopes, northwestern Mediterranean Sea. Limnol Oceanogr 54:1488–1500Google Scholar
  128. Sardà F, Calafat A, Flexas M, Tselepides A, Canals M, Espino M, Tursi A (2004) An introduction to Mediterranean deep-sea biology. Sci Mar 68 (S3):7–38Google Scholar
  129. Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406Google Scholar
  130. Skliris N, Djenidi S (2006) Plankton dynamics controlled by hydrodynamic processes near a submarine canyon off NW corsican coast: a numerical modelling study. Cont Shelf Res 26:1336–1358Google Scholar
  131. Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23(9):518–528Google Scholar
  132. Smith KL Jr, Ruhl HA, Bett BJ, Billett DSM, Lampitt RS, Kaufmann RS (2009) Climate, carbon cycling, and deep-ocean ecosystems. Proc Natl Acad Sci USA 106:19211–19218Google Scholar
  133. Smith KL Jr, Ruhl HA, Kahru M, Huffard CL, Sherman AD (2013) Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific. Proc Nat Acad Sci 110(49):19838–19841Google Scholar
  134. Snelgrove PVR, Soetaert K, Solan M, Thrush S, Wei CL, Danovaro R, Fulweiler RW, Kitazato H, Ingole B, Norkko A, Parkes RJ, Volkenborn N (2017) Global carbon cycling on a heterogeneous seafloor. Trends Ecol Evol 33:96–105Google Scholar
  135. Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658Google Scholar
  136. Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res Part I 57:587–595Google Scholar
  137. Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP, Visbeck M, Wallace DWR, Brandt P, Körtzinger A (2012) Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat Clim Change 2:33–37Google Scholar
  138. Sweetman AK et al (2017) Major impacts of climate change on deep-sea benthic ecosystems. Elem Sci Anth 5:4Google Scholar
  139. Taviani M. (2014) Chapter 5 Marine Chemosynthesis in the Mediterranean Sea in the Mediterranean Sea: its history and present challenges, pp 69–83.  https://doi.org/10.1007/978-94-007-6704-1_5
  140. Tepsich P, Rosso M, Halpin PN, Moulins A (2014) Habitat preferences of two deep-diving cetacean species in the northern Ligurian Sea. Mar Ecol Prog Ser 508:247–260Google Scholar
  141. Thurber AR, Sweetman AK, Narayanaswamy BE, Jones DOB, Ingels J, Hansman RL (2013) Ecosystem function and services provided by the deep sea. Biogeosciences 10:18193–18240Google Scholar
  142. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D et al (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101Google Scholar
  143. Tselepides A, Polychronaki T, Marrale D, Akoumianaki I, Dell‘Anno A, Pusceddu A, Danovaro R (2000) Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean). Prog Oceanogr 46:311–344Google Scholar
  144. UNEP-WCMC (2011) Marine and coastal ecosystem services: Valuation methods and their application. UNEP-WCMC Biodiversity. Series No. 33Google Scholar
  145. Van den Hove S, Moreau V (2007) Deep-sea Biodiversity and Ecosystems: A Scoping Report on Their Socio-economy, Management and Governanace (No. 184). UNEP/EarthprintGoogle Scholar
  146. van der Grient JMA, Rogers AD (2015) Body size versus depth: regional and Taxonomical variation in deep-sea meio- and macrofaunal organisms. Adv Mar Biol 71:71–108Google Scholar
  147. Van Dover CL, Aronson J, Pendleton L, Smith S, Arnaud-Haond S, Moreno-Mateos D, Barbier E, Billett D, Bowers K, Danovaro R, Edwards A, Kellert S, Morato T, Pollard E, Rogers A, Warner R (2014) Ecological restoration in the deep sea: desiderata. Mar Pol 44:98–106Google Scholar
  148. Vetter EW, Dayton PK (1998) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep sea Res Part II: Top Stud Oceanogr 45:25–54Google Scholar
  149. Wei CL, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T et al (2010) Global patterns and predictions of seafloor biomass using random forests. PLoS One 5(12):e15323Google Scholar
  150. Woolley SN, Tittensor DP, Dunstan PK, Guillera-Arroita G, Lahoz-Monfort JJ, Wintle BA, Worm B, O’Hara TD (2016) Deep-sea diversity patterns are shaped by energy availability. Nature 19;533(7603):393–396Google Scholar
  151. Würtz M, Rovere M (eds) (2015) Atlas of the mediterranean seamounts and seamount-like structures. IUCN, Gland, Switzerland and Málaga, Spain, p 276Google Scholar
  152. Yacobi YZ, Zohary T, Kress N, Hecht A, Robarts RD, Waiser M, Wood AM (1995) Chlorophyll distribution throughout the southeastern Mediterranean in relation to the physical structure of the water mass. J Mar Syst 6(3):179–190Google Scholar
  153. Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN (2007) Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (Eastern Mediterranean). Orig Life Evol Biosph 37:177–188Google Scholar
  154. Yasuhara M, Danovaro R (2016) Temperature impacts on deep-sea biodiversity. Biol Rev 91:275–287Google Scholar
  155. Zanoli R, Carlesi L, Danovaro R, Mandolesi S, Naspetti S (2015) Valuing unfamiliar Mediterranean deep-sea ecosystems using visual Q-methodology. Mar Pol 61:227–236Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Stazione Zoologica Anton DohrnNaplesItaly

Personalised recommendations