Advertisement

Relativistic quantum chemistry involving heavy atoms

  • Matteo De Santis
  • Leonardo Belapassi
  • Francesco Tarantelli
  • Loriano Storchi
The Quantum World of Molecules
  • 131 Downloads

Abstract

Quantum chemistry is nowadays a term referring to a wide set of theoretical frameworks and models mainly relying on non-relativistic quantum mechanics. While, in most cases, the picture of the molecular structure and of the chemical reality provided by non-relativistic quantum chemistry is appropriate, we live in a universe with a finite speed of light. While neglecting variation of mass and velocity in the interaction of electrons and atomic nuclei is often safe, this is no more the case when heavy atoms are involved. In the present paper, we will briefly review the most rigorous way to include relativity in the modeling of molecular systems, that is to use the full 4-component (4c) formalism derived from the Dirac equation. Specifically, we will review the implementation that has been carried out in an effective 4c code called BERTHA. A recently developed method to gain deep insights into chemical bond is also presented and discussed in the 4c Dirac–Kohn–Sham context, the so-called natural orbitals for chemical valence/charge-displacement analysis.

Keywords

Four-component Relativistic DFT Chemical bond Heavy atoms Relativistic effects 

Notes

Acknowledgements

We thank MIUR and the University of Perugia for the financial support of the AMIS project through the program “Dipartimenti di Eccellenza”. LS thanks University of Chieti-Pescara for the financial support.

References

  1. Amdahl GM (1967) Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, spring joint computer conference, ACM, pp 483–485Google Scholar
  2. Bağcı A, Hoggan PE (2016) Solution of the dirac equation using the rayleigh-ritz method: flexible basis coupling large and small components. Results for one-electron systems. Phys Rev E 94:013302.  https://doi.org/10.1103/PhysRevE.94.013302 CrossRefGoogle Scholar
  3. Bağcı A, Hoggan PE (2018) Analytical evaluation of relativistic molecular integrals i Auxiliary functions. Rend Fis Acc Lincei 29(1):191–197.  https://doi.org/10.1007/s12210-018-0669-8 CrossRefGoogle Scholar
  4. Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J Chem Phys 123(6):064107CrossRefGoogle Scholar
  5. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  6. Belli Dell’Amico D, Calderazzo F, Dantona R, Straehle J, Weiss H (1987) Olefin complexes of gold (i) by carbonyl displacement from carbonylgold (i) chloride. Organometallics 6(6):1207–1210CrossRefGoogle Scholar
  7. Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2006) Electron density fitting for the Coulomb problem in relativistic density-functional theory. J Chem Phys 124(12):124104.  https://doi.org/10.1063/1.2179420 CrossRefGoogle Scholar
  8. Belpassi L, Infante I, Tarantelli F, Visscher L (2008a) The chemical bond between Au(I) and the noble gases. comparative study of NgAuF and NgA\({u}^{+}\) (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130(3):1048–1060.  https://doi.org/10.1021/ja0772647 CrossRefGoogle Scholar
  9. Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2008b) Poisson-transformed density fitting in relativistic four-component Dirac–Kohn–Sham theory. J Chem Phys 128(12):124108.  https://doi.org/10.1063/1.2868770 CrossRefGoogle Scholar
  10. Belpassi L, Storchi L, Quiney HM, Tarantelli F (2011) Recent advances and perspectives in four-component Dirac–Kohn–Sham calculations. Phys Chem Chem Phys 13:12368–12394.  https://doi.org/10.1039/C1CP20569B CrossRefGoogle Scholar
  11. Bistoni G, Rampino S, Tarantelli F, Belpassi L (2015) Charge-displacement analysis via natural orbitals for chemical valence: charge transfer effects in coordination chemistry. J Chem Phys 142(8):084112.  https://doi.org/10.1063/1.4908537 CrossRefGoogle Scholar
  12. Bistoni G, Rampino S, Scafuri N, Ciancaleoni G, Zuccaccia D, Belpassi L, Tarantelli F (2016) How \(\pi \) back-donation quantitatively controls the co stretching response in classical and non-classical metal carbonyl complexes. Chem Sci 7:1174–1184.  https://doi.org/10.1039/C5SC02971F CrossRefGoogle Scholar
  13. Casini A, Messori L (2011) Molecular mechanisms and proposed targets for selected anticancer gold compounds. Curr Top Med Chem 11(21):2647–2660CrossRefGoogle Scholar
  14. Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 28:2939–2942CrossRefGoogle Scholar
  15. De Santis M, Rampino S, Quiney HM, Belpassi L, Storchi L (2018) Charge-displacement analysis via natural orbitals for chemical valence in the four-component relativistic framework. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.7b01077CrossRefGoogle Scholar
  16. Dewar MJS (1951) A review of \(\pi \) complex theory. Bull Soc Chim Fr 18:C71–79Google Scholar
  17. Dirac PA (1949) Forms of relativistic dynamics. Rev Mod Phys 21(3):392CrossRefGoogle Scholar
  18. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  19. Dyall K (2012) Core correlating basis functions for elements 31–118. Theor Chem Acc 131(5):1–11.  https://doi.org/10.1007/s00214-012-1217-8. http://dirac.chem.sdu.dk (basis sets are available from the Dirac web site)
  20. Dyall KG (2004) Relativistic double-zeta , triple-zeta, and quadruple-zeta basis sets for the 5\(d\) elements Hf–Hg. Theor Chem Acc 112(5-6):403–409.  https://doi.org/10.1007/s00214-004-0607-y. http://dirac.chem.sdu.dk/basisarchives/dyall/ (basis sets are available from the Dirac web site) CrossRefGoogle Scholar
  21. Dyall KG (2007) Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd. Theor Chem Acc 117(4):483–489CrossRefGoogle Scholar
  22. Dyall KG, Fægri K (1990) Kinetic balance and variational bounds failure in the solution of the dirac equation in a finite gaussian basis set. Chem Phys Lett 174(1):25–32CrossRefGoogle Scholar
  23. Dyall KG, Gomes AS (2010) Revised relativistic basis sets for the 5\(d\) elements Hf–Hg. Theor Chem Acc 125(1-2):97–100.  https://doi.org/10.1007/s00214-009-0717-7. http://dirac.chem.sdu.dk/basisarchives/dyall/ (basis sets are available from the Dirac web site) CrossRefGoogle Scholar
  24. Evans CJ, Reynard LM, Gerry MC (2001) Pure rotational spectra, structures, and hyperfine constants of OC-AuX (X = F, Cl, Br). Inorg Chem 40(24):6123–6131CrossRefGoogle Scholar
  25. Fortunelli A, Germano G (2000) Ab initio study of the intra-and intermolecular bonding in AuCl(CO). J Phys Chem A 104(46):10834–10841CrossRefGoogle Scholar
  26. Frenking G (2001) Understanding the nature of the bonding in transition metal complexes: from dewar’s molecular orbital model to an energy partitioning analysis of the metal-ligand bond. J Organomet Chem 635(1):9–23CrossRefGoogle Scholar
  27. Grant IP (2007) Relativistic quantum theory of atoms and molecules: theory and computation. Springer, Berlin (Springer series on atomic, optical, and plasma physics)CrossRefGoogle Scholar
  28. Grant IP, Quiney HM (1988) Foundations of the relativistic theory of atomic and molecular structure. Advances in atomic and molecular physics, vol 23. Academic Press, Cambridge, pp 37 – 86.  https://doi.org/10.1016/S0065-2199(08)60105-0 Google Scholar
  29. Grant IP, Quiney HM (2000) Rayleigh-Ritz approximation of the Dirac operator in atomic and molecular physics. Phys Rev A 62:022508.  https://doi.org/10.1103/PhysRevA.62.022508 CrossRefGoogle Scholar
  30. Huheey J, Keiter E, Keiter R (1993) Inorganic chemistry, 4th edn. Harper Collins, New York, NYGoogle Scholar
  31. Ishikawa Y, Baretty R, Binning R (1985) Relativistic Gaussian basis set calculations on one-electron ions with a nucleus of finite extent. Chem Phys Lett 121(1):130–133.  https://doi.org/10.1016/0009-2614(85)87169-4 CrossRefGoogle Scholar
  32. Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806CrossRefGoogle Scholar
  33. Kinoshita T, Ji Fujisawa, Nakazaki J, Uchida S, Kubo T, Segawa H (2012) Enhancement of near-ir photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J Phys Chem Lett 3(3):394–398CrossRefGoogle Scholar
  34. Köster AM, Salahub DR et al (2016) demon2k, version 4, the demon developers. http://www.demon-software.com/public_html/program.html. Accessed 14 Feb 2018
  35. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  36. van Lenthe EV, Snijders J, Baerends E (1996) The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J Chem Phys 105(15):6505–6516CrossRefGoogle Scholar
  37. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5(4):962–975.  https://doi.org/10.1021/ct800503d CrossRefGoogle Scholar
  38. Mitoraj MMA (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13:347–355CrossRefGoogle Scholar
  39. Nalewajski RF, Mrozek J (1994) Modified valence indices from the two-particle density matrix. Int J Quantum Chem 51(4):187–200.  https://doi.org/10.1002/qua.560510403 CrossRefGoogle Scholar
  40. Nalewajski RF, Köster AM, Jug K (1993) Chemical valence from the two-particle density matrix. Theor Chem Acc 85(6):463–484.  https://doi.org/10.1007/BF01112985 CrossRefGoogle Scholar
  41. Nalewajski RF, Mrozek J, Michalak A (1997) Two-electron valence indices from the Kohn–Sham orbitals. Int J Quantum Chem 61(3):589–601CrossRefGoogle Scholar
  42. Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88(3):563–594CrossRefGoogle Scholar
  43. Pyykkö P (2012) Relativistic effects in chemistry: more common than you thought. Annu Rev Phys Chem 63:45–64CrossRefGoogle Scholar
  44. Pyykkö P, Desclaux JP (1979) Relativity and the periodic system of elements. Acc Chem Res 12(8):276–281.  https://doi.org/10.1021/ar50140a002 CrossRefGoogle Scholar
  45. Quiney H, Skaane H, Grant I (1997) Relativistic calculation of electromagnetic interactions in molecules. J Phys B At Mol Opt 30(23):L829CrossRefGoogle Scholar
  46. Quiney HM, Belanzoni P (2002) Relativistic density functional theory using Gaussian basis sets. J Chem Phys 117(12):5550–5563.  https://doi.org/10.1063/1.1502245 CrossRefGoogle Scholar
  47. Rampino S, Belpassi L, Tarantelli F, Storchi L (2014) Full Parallel Implementation of an all-electron four-component Dirac–Kohn–Sham program. J Chem Theory Comput 10(9):3766–3776.  https://doi.org/10.1021/ct500498m CrossRefGoogle Scholar
  48. Rampino S, Storchi L, Belpassi L (2015) Gold-superheavy-element interaction in diatomics and cluster adducts: a combined four-component Dirac–Kohn–Sham/charge-displacement study. J Chem Phys 143(2):024307CrossRefGoogle Scholar
  49. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. J Chem Phys 121(22):10945–10956CrossRefGoogle Scholar
  50. Reiher M, Wolf A (2014) Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley, HobokenCrossRefGoogle Scholar
  51. Saunders V (1983) Molecular integrals for Gaussian type functions. In: Methods in computational molecular physics, Springer, New York, pp 1–36Google Scholar
  52. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052.  https://doi.org/10.1021/ci600510j CrossRefGoogle Scholar
  53. Swirles B (1935) The relativistic self-consistent field. Proc R Soc Lond Ser A Math Phys Sci 152(877):625–649CrossRefGoogle Scholar
  54. Theilacker K, Schlegel HB, Kaupp M, Schwerdtfeger P (2015) Relativistic and solvation effects on the stability of gold (III) Halides in aqueous solution. Inorg Chem 54(20):9869–9875CrossRefGoogle Scholar
  55. Visscher L, Dyall KG (1997) Dirac-fock atomic electronic structure calculations using different nuclear charge distributions. At Data Nucl Data Table 67:207CrossRefGoogle Scholar
  56. Zuccaccia D, Belpassi L, Macchioni A, Tarantelli F (2013) Ligand effects on bonding and ion pairing in cationic gold(I) catalysts bearing unsaturated hydrocarbons. Eur J Inorg Chem 24:4121–4135.  https://doi.org/10.1002/ejic.201300285 CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di FarmaciaUniversità degli Studi ‘G. D’Annunzio’ChietiItaly

Personalised recommendations