The International Terrestrial Reference Frame: lessons from ITRF2014

  • Zuheir AltamimiEmail author
  • Paul Rebischung
  • Laurent Métivier
  • Xavier Collilieux
Satellite Positioning for Geosciences


We review the progress and continuous improvements being made since more than 30 years in the determination and development of the International Terrestrial Reference Frame (ITRF). We present the modeling innovations introduced in the ITRF2014 elaboration, mainly (1) the estimation of the annual and semi-annual signals embedded in the time series of station coordinates provided by the four space geodesy techniques, and (2) the incorporation of post-seismic deformation (PSD) models for sites subject to major earthquakes. We recall the rank deficiency problem in the ITRF combination model that is related to the specification of the ITRF defining parameters. We evaluate the precision and accuracy of the main ITRF2014 geodetic and geophysical products using some key performance indicators. We address some scientific questions of space geodesy contribution, via ITRF2014 results, to understand geophysical processes that affect the Earth system, such as earthquake displacements, tectonic motions and loading effects. We evaluate in particular the performance of estimating periodic signals versus applying a non-tidal atmospheric loading model. A particular emphasis is devoted to the level of agreement between techniques in terms of seasonal signals, frame physical parameters (origin and scale) and consistency with terrestrial local ties at co-location sites. Main conclusions are then drawn to guide and improve our analysis and combination strategy for future ITRF developments.


Geodesy Reference frames ITRF 


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res Solid Earth 107(B10):2214. CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res Solid Earth 112:B09401. CrossRefGoogle Scholar
  3. Altamimi Z, Métivier L, Collilieux X (2012) ITRF2008 Plate motion model. J Geophys Res 117:B07402. CrossRefGoogle Scholar
  4. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Solid Earth, J Geophys Res. CrossRefGoogle Scholar
  5. Appleby G, Rodriguez R, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geodesy. CrossRefGoogle Scholar
  6. Boucher C, Altamimi Z (1985) Towards an improved realization of the BIH Terrestrial Frame. In: Mueller II (ed) Proceedings of the international conference on Earth rotation and reference frames, MERIT/COTES Report, vol 2, Ohio State University, Columbus, OH, USAGoogle Scholar
  7. Collilieux X, Altamimi Z, Rebischung P, Métivier L (2017) Coordinate kinematic models in the International Terrestrial Reference Frame releases. In: Honorary Volume of A. Dermanis, Department of Geodesy and Surveying, Faculty of Rural and Surveying Engineering, Aristotle University, Thessaloniki, GreeceGoogle Scholar
  8. Dermanis A (2003) The rank deficiency in estimation theory and the definition of reference frames. In: Sansò F (ed) 2003: V Hotine-Marussi Symposium on Mathematical Geodesy, Matera, Italy June 17–21, 2003. International Association of Geodesy Symposia 127:145–156. Springer, HeidelbergGoogle Scholar
  9. Dow J, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. CrossRefGoogle Scholar
  10. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143CrossRefGoogle Scholar
  11. Petit G, Luzum B (2010) IERS conventions 2010, IERS Technical Note No. 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, p 179. ISBN 3-89888-989-6Google Scholar
  12. Sarti P, Abbondanza C, Vittuari L (2009) Gravity-dependent signal path variation in a large VLBI telescope modelled with a combination of surveying methods. J Geod 83(11):1115–1126. CrossRefGoogle Scholar
  13. Sarti P, Abbondanza C, Petrov L, Negusini M (2010) Height bias and scale effect induced by antenna gravity deformations in geodetic VLBI data analysis. J Geod. CrossRefGoogle Scholar
  14. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. CrossRefGoogle Scholar
  15. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The international DORIS service, toward maturity. In: Willis P (ed) DORIS: Scientific applications in geodesy and geodynamics. Advances in space research, vol 45, issue 12, pp 1408–1420.

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Institut National de l’Information Géographique et ForestièreSaint-MandéFrance
  2. 2.Université Paris Diderot, UFR STEP/IPGP/LAREG, Bâtiment Lamarck AParis Cedex 13France
  3. 3.Ecole Nationale des Sciences GéographiquesChamps sur marneFrance

Personalised recommendations