Advertisement

Rendiconti Lincei

, Volume 28, Issue 2, pp 415–424 | Cite as

Human disturbance, habitat degradation and niche shift: the case of the endemic Calendula maritima Guss. (W Sicily, Italy)

  • Salvatore Pasta
  • Giuseppe Garfì
  • Francesco Carimi
  • Corrado MarcenòEmail author
Article

Abstract

Calendula maritima Guss. is a plant endemic to the coastline of W Sicily, whose distribution range experienced a dramatic shrinkage during the last centuries along with the degradation and fragmentation of the associated plant assemblages. According to that, it can represent an effective target species to test the response of coastal biota to anthropogenic disturbance. In order to better understand the niche width of C. maritima, the coastal plant communities in which it is still found have been investigated through vegetation relevés carried out on different size plots. Although the sea marigold has been considered as a pioneer species typical of shifting dunes, field investigations highlighted that it also occurs in different plant assemblages. Data concerning the smaller plots allowed the identification of three groups of relevés: one showing the highest number of trivial ruderal plants, another hosting some psammophilous species, and a third linked with rocky surfaces. These three groups do not cluster with the relevés issuing from literature, carried out some 40 years ago, that mostly focused on dune ecosystems. It is assumed that the strong floristic differences between these two different types of relevés may be linked with the destruction of shifting dunes occurred over the last decades, and which also caused the local extinction of many other plants related with this habitat. However, this could also reflect a lack of historical relevés concerning C. maritima populations growing on coastal rocky sites. Interestingly, a gradual expansion of the niche of C. maritima was highlighted, likely depending on the ability of the species to colonize new plant communities in response to increasing anthropogenic disturbance. Our results also confirm that hybridization with the contiguous congener species Calendula fulgida Raf. may represent a major threat for conservation of the remnant populations of C. maritima.

Keywords

Coastal habitats Extinction risk Mediterranean islands Taxonomic homogenization Vegetation dynamics 

Notes

Acknowledgements

The authors are grateful to the Klorane Foundation (France) for the financial support during the achievement of the Project ‘Salvaguardia delle popolazioni di Calendula maritima Guss., specie minacciata della flora siciliana’. Thanks are also due to Agostino D’Amico, Gianpietro Giusso del Galdo, Francesco Grammatico, Saverio Sciandrello and Leonardo Scuderi for providing unpublished vegetation relevés, and to Dario Cusimano for helping during the bibliographic research. The remarks and suggestions of one of the referees were very much appreciated and contributed to improvement of the manuscript.

Supplementary material

12210_2017_611_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)

References

  1. Béguinot A (1924) 2973: Calendula maritima Guss. In: Fiori A, Béguinot A (eds) Schedae ad Floram Italicam Exsiccatam Series III, Centuriae XXIX-XXX. Forlì, Tip, ValbonesiGoogle Scholar
  2. Beltrán E, Valiente-Banuet A, Verdú M (2012) Trait divergence and indirect interactions allow facilitation of congeneric species. Ann Bot 110:1369–1376CrossRefGoogle Scholar
  3. Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899CrossRefGoogle Scholar
  4. Bertacchi A, Zuffi MAL, Lombardi T (2016) Foredune psammophilous communities and coastal erosion in a stretch of the Ligurian sea (Tuscany, Italy). Rend Fis Acc Lincei 27:639. doi: 10.1007/s12210-016-0543-5 CrossRefGoogle Scholar
  5. Bierwagen BG (2007) Connectivity in urbanizing landscapes: the importance of habitat configuration, urban area size, and dispersal. Urban Ecosyst 10:29–42CrossRefGoogle Scholar
  6. Biondi E, Burrascano S, Casavecchia S, Copiz R, Del Vico E, Galdenzi D, Gigante D, Lasen C, Spampinato G, Venanzoni R, Zivkovic L, Blasi C (2012) Diagnosis and syntaxonomic interpretation of Annex I Habitats (Dir. 92/43/EEC) in Italy at the alliance level. Plant Sociol 49(1):5–37Google Scholar
  7. Boccone P (1697) Museo di fisica e di esperienze variato, e decorato di osservazioni naturali, note medicinali e ragionamenti secondo i Principij de’ Moderni. Osservazione Duodecima: All’Illustriss.mo et Eccell.mo Sig. Io: Hoskins Baronet e Presidente della Società Reggia in Londra. Intorno a Fungus Typhoides, coccineus, tuberosus Melitensis: pp. 69–72 + tav. 1, fig. G (p. 56), Venezia, Io: Battista ZuccatoGoogle Scholar
  8. Botta-Dukát Z, Chytrý M, Hájková P, Havlová M (2005) Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe. Preslia 77:89–111Google Scholar
  9. Braun-Blanquet J (1932) Plant sociology. Mc Graw-Hill, New YorkGoogle Scholar
  10. Brullo S, Di Martino A (1974) La vegetazione dell’Isola Grande dello Stagnone (Marsala). Boll St Inform Giard Colon Palermo 26:15–62Google Scholar
  11. Brullo S, Signorello P (1989) La classe Crithmo-Limonietea in Tunisia. Colloq Phytosoc 19:725–736Google Scholar
  12. Brullo S, Scelsi F, Spampinato G (1998) Considerazioni sintassonomiche sulla vegetazione perenne dei substrati incoerenti dell’Italia meridionale e Sicilia. Itin Geobot 11:403–424Google Scholar
  13. Brullo S, Giusso del Galdo G, Siracusa G, Spampinato G (2001) Considerazioni fitogeografiche sulla vegetazione psammofila dei litorali italiani. Biogeographia 22:93–137CrossRefGoogle Scholar
  14. Capelo J, Costa JC, Lousã M, Fontinha S, Jardim R, Sequeira M, Rivas-Martínez S (2000) Vegetação da Madeira (Portugal): aproximação à tipologia fitossociologica. Silva Lusit 7(2):257–282Google Scholar
  15. Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90CrossRefGoogle Scholar
  16. Chytrý L, Hennekens SM, Schaminée JHJ (2014) Assessing vegetation change using vegetation-plot databases: a risky business. Appl Veg Sci 17:32–41CrossRefGoogle Scholar
  17. Ciccarelli D (2015) Mediterranean coastal dune vegetation: are disturbance and stress the key selective forces that drive the psammophilous succession? Estuar Coast Shelf Sci 165:247–253CrossRefGoogle Scholar
  18. Conti F, Abbate G, Alessandrini A, Blasi C (ed) (2005) An annotated checklist of the italian vascular Flora. Ministero dell’Ambiente e della Tutela del Territorio, Direzione per la Protezione della Natura. Palombi Ed., Rome, pp 420Google Scholar
  19. Costa JC, Capelo J, Lousã M, Espírito Santo MD (1998) Sintaxonomia da vegetação halocasmofítica das arribas marítimas portuguesas (Crithmo-Staticetea Br.-Bl. 1947). Itin Geobot 11:227–247Google Scholar
  20. Costa JC, Lousã M, Capelo J, Espírito Santo MD, Izco Sevillano J, Arsénio P (2000) The coastal vegetation of the Portuguese Divisory Sector: dune cliffs and low-scrub communities. Finisterra 36:69–93Google Scholar
  21. Costa JC, Espírito Santo MD, Lousã M, Rodríguez-González P, Capelo J, Arsénio P (2001) Flora e Vegetação do Divisório Português (Excursão ao Divisório Português). 2º Curso Avançado de Fitossociologia, ALFA, I.S. Agronomia. LisboaGoogle Scholar
  22. Costa JC, Capelo J, Lousã M, Espírito Santo MD (2004) As comunidades de Asparago albi-Rhamnion oleoidis Rivas Goday ex Rivas-Martínez 1975 do Divisório Português. Quercetea 4:31–43Google Scholar
  23. Costa JC, Capelo J, Arsénio P, Monteiro Henriques T (2005) The landscape and plant communities of Serra da Arrábida. Quercetea 7:7–25Google Scholar
  24. Costa JC, Neto C, Martins M, Lousã M (2011) Annual dune plant communities in the Southwest coast of Europe. Plant Biosyst 145(suppl 1):91–104CrossRefGoogle Scholar
  25. Di Martino A, Perrone C (1970) Flora delle isole dello Stagnone (Marsala). I. Isola Grande. Lav. Ist Bot Giard Colon Palermo 24:109–166Google Scholar
  26. Dostál P (2011) Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. Am Nat 177(5):654–667CrossRefGoogle Scholar
  27. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050CrossRefGoogle Scholar
  28. Forey E, Chapelet B, Vitasse Y, Tilquin M, Touzard B, Michalet R (2008) The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. J Veg Sci 19:493–502CrossRefGoogle Scholar
  29. Frei M (1937) Studi fitosociologici su alcune associazioni litorali in Sicilia (Ammophiletalia e Salicornietalia). N Giorn Bot Ital ns 44(2):273–294CrossRefGoogle Scholar
  30. García-Serrano H, Sansa FX, Escarré J (2007) Interspecific competition between alien and native congeneric species. Acta Oecol 31:69–71CrossRefGoogle Scholar
  31. Grammatico F, Fici S (2008) Distribuzione, fenologia e status di conservazione di Calendula suffruticosa Vahl subsp maritima (Guss) Meikle (Asteraceae). Naturalista sicil 32(3–4):305–318Google Scholar
  32. Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, New York, p 456Google Scholar
  33. Guarino R, Pignatti S (2010) Diversitas and biodiversity: the roots of a 21st century myth. Rend Fis Acc Lincei 20(4):351–357CrossRefGoogle Scholar
  34. Guarino R, Menegoni P, Pignatti S, Tulumello S (2015) A territorial contradiction. In: Gambino R, Peano A (eds) Nature policies and landscape policies: towards and alliance. Urban & landscape perspectives, vol 18. Springer, Berlin, pp 69–76Google Scholar
  35. Gussone G (1843–1844) Florae Siculae Synopsis exhibens plantas vasculares in Sicilia insulisque adjacentibus hucusque detectas secundum systema Linneanum dispositas. Neapoli, Typ Tramater, 2 (1):1–526 + iii ppGoogle Scholar
  36. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591CrossRefGoogle Scholar
  37. Jiménez-Alfaro B, Gavilán RG, Escudero A, Iriondo JI, Fernández González F (2014) Decline of dry grassland specialists in Mediterranean high-mountain communities influenced by recent climate warming. J Veg Sci 25:1394–1404CrossRefGoogle Scholar
  38. Keith SA, Newton AC, Morecroft MD, Bealey CE, Bullock JM (2009) Taxonomic homogenization of woodland plant communities over 70 years. Proc R Soc Lond Ser B 276:3539–3544CrossRefGoogle Scholar
  39. Ladero M, Valle C, Santos MT, Amor A, Espírito-Santo MD, Lousã M, Costa JC (1991) Sobre vegetación y flora rupícola de las intercalaciones calcáreas de los sectores Divisório portugués y Beirense litoral. Candollea 46(1):53–59Google Scholar
  40. Landi S, Chiarucci A (2014) Commonness and rarity of plants in a reserve network: just two faces of the same coin. Rend Fis Acc Lincei 25(3):369–380CrossRefGoogle Scholar
  41. Landucci F, Gigante D, Venanzoni R, Chytrý M (2013) Wetland vegetation of the class Phragmito-Magnocaricetea in central Italy. Phytocoenologia 43(1–2):67–100CrossRefGoogle Scholar
  42. Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518CrossRefGoogle Scholar
  43. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809CrossRefGoogle Scholar
  44. Macedo JA, Alves P, Lomba A, Vicente J, Henriques R, Granja H, Honrado J (2010) On the interest of plant functional classifications to study community-level effects of increased disturbance on coastal dune vegetation. Acta Bot Gall 157:305–315CrossRefGoogle Scholar
  45. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 227:147–160Google Scholar
  46. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14(11):450–453CrossRefGoogle Scholar
  47. Mucina L (2016) Conspectus of classes of European vegetation. Appl Veg Sci 19(Suppl. 1):3–264CrossRefGoogle Scholar
  48. Nora S, Castro S, Loureiro J, Gonçalves AC, Oliveira H, Castro M, Santos C, Silveira P (2013) Flow cytometric and karyological analyses of Calendula species from Iberian Peninsula. Plant Syst Evol 299:853–864CrossRefGoogle Scholar
  49. Oberprieler C, Heine G, Baessler C (2015) Can divergent selection save the rare Senecio hercynicus from genetic swamping by its spreading congener S. ovatus (Compositae, Senecioneae)? Flora 210:47–59CrossRefGoogle Scholar
  50. Oksanen J, Kindt R, O’Hara RB (2009) VEGAN: Community Ecology Package. R package version 1.15-4. http://cc.oulu.fi/~jarioksa/softhelp/vegan.html Accessed 02 Jan 2015
  51. Olden JD, LeRoy Poff N, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19(1):18–24CrossRefGoogle Scholar
  52. Perrone C (1964) Una nuova stazione di Calendula officinalis L. var. maritima (Guss.) e la sua distribuzione geografica. Lav Ist Bot Giard Colon Palermo 20:276–284Google Scholar
  53. Peruzzi L, Vangelisti R (2010) Considerazioni tassonomiche su Hyoseris taurina (Asteraceae) e sua presenza in Italia centrale. Ann Bot (Roma), Quaderni, n.s.: 119–134Google Scholar
  54. Pinto-Gomes C, Paiva-Ferreira R, Meireles C (2007) New proposals on Portuguese vegetation. Lazaroa 28:67–77Google Scholar
  55. Plume O, Troìa A, Raimondo FM (2015) Hybridization and competition between the endangered sea marigold (Calendula maritima, Asteraceae) and a more common congener. Plant Biosyst 149:68–77CrossRefGoogle Scholar
  56. Ponzo A (1905) La flora psammofila del litorale di Trapani. Naturalista sicil, ser 2, 12 (7-8): 173-177; ibidem, 12 (9): 201-208; ibidem, 12 (10): 230-237Google Scholar
  57. Raimondo FM, Bazan G, Troìa A (2011) Taxa a rischio nella flora vascolare della Sicilia. Biogeografia 30:229–239Google Scholar
  58. Rhymer JM, Simberloff DS (1996) Extinction by hybridization and introgression. Ann Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  59. Rivas-Martínez S, Fernández-González F, Loidi J (1999) Checklist of plant communities of Iberian Peninsula, Balearic and Canary Islands to suballiance level. Itin Geobot 13:353–451Google Scholar
  60. Roleček J, Tichý L, Zelený D, Chytrý M (2009) Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J Veg Sci 20:596–602CrossRefGoogle Scholar
  61. Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc Ecol 26:529–540CrossRefGoogle Scholar
  62. Sciandrello S, Tomaselli G, Minissale P (2015) The role of natural vegetation in the analysis of the spatio-temporal changes of coastal dune system: a case study in Sicily. J Coast Conserv 19:199–212CrossRefGoogle Scholar
  63. Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research. W.H. Freeman and Company, New YorkGoogle Scholar
  64. Spanò C, Balestri M, Bottega S, Grilli I, Forino LMC, Ciccarelli D (2013) Anthemis maritima L. in different coastal habitats: a tool to explore plant plasticity. Estuar Coast Shelf Sci 129:105–111CrossRefGoogle Scholar
  65. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  66. Troìa A, Pasta S (2005) Calendula maritima. In: Montomollin B, Strahm W (eds) The top 50 mediterranean island plants. Wild plants at the brink of extinction, and what is needed to save them. IUCN/SSC Mediterranean Islands Plant Specialist Group, Gland, pp 92–93Google Scholar
  67. Troìa A, Pasta S (2006) Calendula maritima. The IUCN red list of threatened species 2006: e.T61618A12524417. Accessed 02 Jan 2015Google Scholar
  68. Vilà M, Weber E, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217CrossRefGoogle Scholar
  69. Wilson JB, Sykes MT (1999) Is zonation on coastal sand dunes determined primarily by sand burial or by salt spray? A test in New Zealand dunes. Ecol Lett 2:233–236CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  • Salvatore Pasta
    • 1
    • 2
  • Giuseppe Garfì
    • 1
  • Francesco Carimi
    • 1
  • Corrado Marcenò
    • 1
    • 3
    Email author
  1. 1.National Research Council of Italy (CNR)Institute of Biosciences and BioResources (IBBR)PalermoItaly
  2. 2.Département de BiologieFribourgSwitzerland
  3. 3.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations