Advertisement

Rendiconti Lincei

, Volume 26, Issue 3, pp 345–356 | Cite as

A test on Ellenberg indicator values in the Mediterranean evergreen woods (Quercetea ilicis)

  • Corrado Marcenò
  • Riccardo Guarino
Article

Abstract

The consistency and reliability of Ellenberg’s indicator values (Eiv) as ecological descriptors of the Mediterranean evergreen vegetation ascribed to the phytosociological class Quercetea ilicis have been checked on a set of 859 phytosociological relevés × 699 species. Diagnostic species were identified through a Twinspan analysis and their Eiv analyzed and related to the following independent variables: (1) annual mean temperatures, (2) annual rainfall. The results provided interesting insights to disentangle the current syntaxonomical framework at the alliance level demonstrating the usefulness of ecological indicator values to test the efficiency and predictivity of the phytosociological classification.

Keywords

Quercetea ilicis Ecological indicators Maquis Scrublands Mediterranean Sicily 

Notes

Acknowledgments

Forum Plinianum is gratefully acknowledged for the financial and scientific support; Ida Lindholm for linguistic revision. Thanks are due, as well, to the anonymous referees for their valuable observations and constructive criticism.

References

  1. Bardat J, Bioret F, Botineau M, Boullet V, Delpech R, Géhu JM, Haury J, Lacoste A, Rameau JC, Royer JM, Roux G, Touffet J (2004) Prodrome des végétations de France. Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  2. Bazan G, Marino P, Guarino R, Domina G, Schicchi R (2015) Bioclimatology and vegetation series in Sicily: a geostatistical approach. Acta Bot Fenn 52:1–18CrossRefGoogle Scholar
  3. Bianco PM, Testi A, Belisario F, Guidotti S (2003) Vegetation patterns in the succession from wood fringes towards woodlands. Rend Fis Acc Lincei 9:135–160Google Scholar
  4. Biondi E, Allegrezza M, Casavecchia S, Galdenzi D, Gigante D, Pesaresi S (2013) Validation of some syntaxa of Italian vegetation. Plant Biosyst 147:186–207Google Scholar
  5. Biondi E, Allegrezza M, Casavecchia S, Galdenzi D, Gasparri R et al (2014a) New and validated syntaxa for the checklist of Italian vegetation. Plant Biosyst 148(1):318–332CrossRefGoogle Scholar
  6. Biondi E, Blasi C, Allegrezza M, Anzellotti I, Azzella MM et al (2014b) Plant communities of Italy: the vegetation prodrome. Plant Biosyst 148(4):728–814CrossRefGoogle Scholar
  7. Böhling N, Greuter W, Raus T (2002) Indicator values for vascular plants in the Southern Aegean (Greece). Braun-Blanquetia 32:1–109Google Scholar
  8. Bolboacă SD, Jäntschi L (2006) Pearson versus spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo J Sci 5:179–200Google Scholar
  9. Bolòs A, Bolòs O (1950) Vegetación de las comarcas barcelonesas. Inst Esp Est Medit, BarcelonaGoogle Scholar
  10. Borhidi A (1995) Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the hungarian flora. Acta Bot Hungar 39:97–181Google Scholar
  11. Botta-Dukát Z, Chytrý M, Hajkova P, Havlova M (2005) Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe. Preslia 77:89–111Google Scholar
  12. Braun-Blanquet J (1964) Pflanzensoziologie Grundzüge der Vegetationskunde. Springer, WienCrossRefGoogle Scholar
  13. Brullo S, Gianguzzi L, La Mantia A, Siracusa G (2008) La classe Quercetea ilicis in Sicilia. Boll Acc Gioenia Sci Nat Catania 41:1–124Google Scholar
  14. Brunialti G, Frati L, Aleffi M, Marignani M, Rosati L, Burrascano S, Ravera S (2010) Lichens and bryophytes as indicators of oldgrowth features in Mediterranean forests. Pl Biosyst 144:221–233CrossRefGoogle Scholar
  15. Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90CrossRefGoogle Scholar
  16. Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10(2):63–66CrossRefGoogle Scholar
  17. Degorski M (1982) Usefullness if Ellenberg bioindicators in characteristic plan communities and forest habitats on the basis of data from the range Grabowy in Kampinos Forest. Ekol Pol (Warsaw) 30:453–477Google Scholar
  18. De Marco G, Caneva G (1985) Analisi sintassonomica e fitogeografica comparata di alcune significative cenosi a Pinus halepensis Mill. in Italia. Not Fitosoc 19:155–176Google Scholar
  19. Diekmann M (1995) Use and improvement of Ellenberg’s indicator values in deciduous forests of the boreo-nemoral zone in Sweden. Ecography 18:178–189CrossRefGoogle Scholar
  20. Diekmann M (2003) Species indicator values as an important tool in applied ecology–a review. Basic Appl Ecol 4:493–506CrossRefGoogle Scholar
  21. Ellenberg H (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobot Göttingen 9Google Scholar
  22. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze, GöttingenGoogle Scholar
  23. Ertsen ACD, Alkemade JRM, Wassen MJ (1998) Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in The Netherlands. Plant Ecol 135:113–124CrossRefGoogle Scholar
  24. ESRI (2011) ArcGIS Desktop: release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  25. Fanelli G (2002) Analisi fitosociologica dell’area metropolitana di Roma. Braun-Blanquetia 27:1–269Google Scholar
  26. Fanelli G, Testi A, Pignatti S (2006a) Ecological indicator values for species in Central and Southern Italy flora. Accademia delle Scienze, Scritti e Documenti 37:505–564Google Scholar
  27. Fanelli G, Pignatti S, Testi A (2006b) An application case of ecological indicator values (Zeigerwerte) calculated with a simple algorithmic approach. Plant Biosyst 141:15–21CrossRefGoogle Scholar
  28. Fanelli G, Tescarollo P, Testi A (2006c) Ecological indicators applied to urban and suburban floras. Ecol Indic 6:444–457CrossRefGoogle Scholar
  29. Feoli E, Lagonegro M (1982) Syntaxonomical analysis of beech woods in the Apennines (Italy) using the program package IAHOPA. Vegetatio 50:129–173CrossRefGoogle Scholar
  30. Fioretto A, Papa S, Pellegrino A, Fuggi A (2007) Decomposition dynamics of Myrtus communis and Quercus ilex leaf litter: mass loss, microbial activity and quality change. Appl Soil Ecol 36:32–40CrossRefGoogle Scholar
  31. Gégout JC, Krizova E (2003) Comparison of indicator values of forest understory plant species in Western Carpathians (Slovakia) and Vosges Mountains (France). Forest Ecol Manag 182:1–11CrossRefGoogle Scholar
  32. Giardina G, Raimondo FM, Spadaro V (2007) A catalogue of plants growing in Sicily. Bocconea 20:5–582Google Scholar
  33. Gigante D, Acosta ATR, Agrillo E, Attorre F, Cambria VE et al (2012) VegItaly: technical features, crucial issues and some solutions. Plant Sociol 49:69–80Google Scholar
  34. Godefroid S, Dana ED (2007) Can Ellenberg’s indicator values for Mediterranean plants be used outside their region of definition? J Biogeogr 34:62–68CrossRefGoogle Scholar
  35. González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter-a review. Environ Internat 30:855–870CrossRefGoogle Scholar
  36. Gristina AS, Marcenò C (2008) Gli indici di bioindicazione di Pignatti-Ellenberg nello studio floristico-vegetazionale del promontorio di Capo Zafferano (Sicilia nord-occidentale). Naturalista Sicil 32:61–96Google Scholar
  37. Guarino R, Bernardini A (2002) Indagine sulla diversità floro-vegetazionale del comprensorio del cuoio (Toscana centro-settentrionale). Tip Bongi, San Miniato (PI)Google Scholar
  38. Guarino R, Domina G, Pignatti S (2012) Ellenberg’s Indicator values for the Flora of Italy–first update: pteridophyta, Gymnospermae and Monocotyledoneae. Fl Medit 22:197–209CrossRefGoogle Scholar
  39. Guarino R, Bazan G, Paura B (2014) Downy-oak woods of Italy: phytogeographical remarks on a controversial taxonomic and ecologic issue. In: Box E, Fujiwara K (eds) Warm-temperate Deciduous Forests around the Northern Hemisphere. Geobotany Studies 8:139–152. doi: 10.1007/978-3-319-01261-2_7
  40. Guinochet M, Drouineau G (1944) Notes sur la vegetation et les sols aux environs d’Antibes (Alpes maritimes). Rec Trav Ist Bot Montpellier 1:22–40Google Scholar
  41. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591CrossRefGoogle Scholar
  42. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. http://www.worldclim.org/. Accessed 06 Dec 2014
  43. Hill MO (1979) TWINSPAN A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, NYGoogle Scholar
  44. Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British plants. Institute of Terrestrial Ecology, HuntingdonGoogle Scholar
  45. Jelaska SD, Babic L, Skvirk Z, Nikolic T (2014) 40 years of Ellenberg’s indicator values-do we need another 40 to complete values for Croatian flora? In: Carni A, Juvan N, Ribeiro D, (eds) 23rd International Workshop of the European Vegetation Survey-Book of Abstracts: 45–46Google Scholar
  46. Knollová I, Chytrý M, Tichý L, Hájek O (2005) Stratified resampling of phytosociological databases: some strategies for obtaining more representative data sets for classification studies. J Veg Sci 16:479–486CrossRefGoogle Scholar
  47. Landucci F, Acosta ATR, Agrillo E, Attorre F, Biondi E et al (2012) VegItaly: the Italian collaborative project for a national vegetation database. Pl Biosyst 146:756–763CrossRefGoogle Scholar
  48. Larcher W (2001) Ökophysiologie der Pflanzen, 6th edn. Ulmer, StuttgartGoogle Scholar
  49. Lawesson JE, Fosaa AM, Olsen E (2003) Calibration of Ellenberg indicator values for Faroe islands. Appl Veg Sci 6:53–62CrossRefGoogle Scholar
  50. Lengyel A, Chytrý M, Tichý L (2011) Heterogeneity-constrained random resampling of phytosociological databases. J Veg Sci 22:175–183CrossRefGoogle Scholar
  51. Lenoir J, Graae BJ, Aarrestad PA, Alsos IG, Armbruster WS et al (2013) Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biol 19(5):1470–1481CrossRefGoogle Scholar
  52. Lucchese F, Monterosso G (1994) Analysis of beech woods of Simbruini-Ernici mountain range (Central Apennines) using Ellenberg indicators. Ann Bot (Roma) 52:185–202Google Scholar
  53. Möller H (1992) Zur Verwendung des Medians bei Zeigerwertberechnungen nach Ellenberg. Tuexenia 12:25–28Google Scholar
  54. Molinier R (1934) Etudes phytosociologiques et ecologiques en Provence occidentale. Ann Mus Hist Nat, Marseille Google Scholar
  55. Mossa L, Aru A, Fogu MC, Guarino R, Zavattero L (2008) Studio geobotanico del Parco Eolico di Ulassai. Edibo, CataniaGoogle Scholar
  56. Oksanen J, Minchin PR (2002) Continuum theory revisited: what shape are species responses along ecological gradients? Ecol Modell 157:119–129CrossRefGoogle Scholar
  57. Oksanen J, Kindt R, O’Hara RB (2009) VEGAN: Community Ecology Package. R package version 1.15–4. http://cc.oulu.fi/~jarioksa/softhelp/vegan.html
  58. Petersen J (2000) Die dünentalvegetation der Wattenmeer-Inseln in der südlichen Nordsee. HusumGoogle Scholar
  59. Pignatti S (1998) I Boschi d’Italia. UTET, TorinoGoogle Scholar
  60. Pignatti S (1999) La phytosociologie Braun-Blanquetiste et ses perspectives. Coll Phytosoc 27:1–15Google Scholar
  61. Pignatti S, Ellenberg H, Pietrosanti S (1996) Ecograms for phytosociological tables based on Ellenberg’s Zeigerwerte. Ann Bot (Roma) 54:5–14Google Scholar
  62. Pignatti S, Bianco PM, Fanelli G, Guarino R, Petersen L, Tescarollo P (2001) Reliability and effectiveness of Ellenberg’s indices in checking flora and vegetation changes induced by climatic variations, In: Walter GR, Burga CA, Edwards PJ (eds) Fingerprints of Climate Changes: adapted behaviour and shifting species ranges, New York, London, pp 281–304Google Scholar
  63. Pignatti S, Menegoni P, Pietrosanti S (2005) Bioindicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg per le piante della flora d’Italia. Braun Blanquetia 39:1–97Google Scholar
  64. Raimondo FM, Scialabba A, Guarino R, Spallino RE (2013) Genetic diversity in Sicilian populations of Quercus ilex (Fagaceae). Flora Medit 23:245–253Google Scholar
  65. Reger B, Kölling C, Jörg E (2011) Modelling effective thermal climate for mountain forests in the Bavarian Alps: which is the best model? J Veg Sci 22(4):677–687CrossRefGoogle Scholar
  66. Rivas-Martìnez S, Fernandez-Gonzalez F, Loidi J (1999) Checklist of plant communities of Iberian Peninsula, Balearic and Canary Islands to suballiance level. Itinera Geobot 13:353–451Google Scholar
  67. Rivas-Martínez S, Fernández-González F, Loidi J, Lousã M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot 14:5–341Google Scholar
  68. Roleček J, Tichý L, Zelený D, Chytrý M (2009) Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J Veg Sci 20:596–602CrossRefGoogle Scholar
  69. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  70. Schröder HK, Andersen HE, Kiehl K (2005) Rejecting the mean: estimating the response of fen plant species to environmental factors by non-linear quantile regression. J Veg Sci 16:373–382CrossRefGoogle Scholar
  71. Seidling W, Rohner MS (1993) Zusammenhänge zwischen Reaktions-Zeigerwerten und boden-chemischen Parametern am Beispiel von Waldbodenvegetation. Phytocoenologia 23:301–317CrossRefGoogle Scholar
  72. Sicuriello F, De Nicola C, Dowgiallo G, Testi A (2014) Assessing the habitat conservation status by soil parameters and plant ecoindicators. iForest (early view): e1–e8 (online 2014-02-14) URL: http://www.sisef.it/iforest/contents/?id=ifor0963-007
  73. Sokal RR, Rohlf FJ (1995) Biometry: The principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  74. ter Braak CJF, Barendregt LG (1986) Weighted averaging of species indicator values: its efficiency in environ-mental calibration. Math Biosci 78:57–72CrossRefGoogle Scholar
  75. ter Braak CJF, Gremmen NJM (1987) Ecological amplitudes of plant species and the internal consistency of Ellenberg’s indicator values for moisture. Vegetatio 69:79–87CrossRefGoogle Scholar
  76. ter Braak CJF, Looman CWN (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:3–11CrossRefGoogle Scholar
  77. Testi A, Bisceglie S, Guidotti S, Fanelli G (2009) Detecting river environmental quality through plant and macroinvertebrate bioindicators in the Aniene River (central Italy). Aquatic Ecol 43:477–486CrossRefGoogle Scholar
  78. Testi A, Fanelli G, Crosti R, Castigliani V, D’Angeli D (2012) Characterizing river habitat quality using plant and animal bioindicators: a case study of Tirino River (Abruzzo Region, Central Italy). Ecol Indic 20:24–33CrossRefGoogle Scholar
  79. Thompson K, Hodgson JG, Grime JP, Rorison IH, Band SR, Spencer RE (1993) Ellenberg numbers revisited. Phytocoenologia 23:277–289CrossRefGoogle Scholar
  80. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  81. Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818CrossRefGoogle Scholar
  82. Underwood AJ (1997) Experiments in Ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  83. Wamelink GWW, Joosten V, van Dobben HF, Berendse F (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  84. Wamelink GWW, Joosten V, Dobben HF, Berendse F (2002) Validity of Ellenberg indicator values judged from physico-chemical field measurements. J Veg Sci 13:269–278CrossRefGoogle Scholar
  85. Wamelink GWW, Goedhart PW, van Dobben HF, Berendse F (2005) Plant species as predictors of soil pH: replacing expert judgment with measurements. J Veg Sci 16:461–470CrossRefGoogle Scholar
  86. Zanella A, Jabiol B, Ponge JF, Sartori G, de Waal R, Van Delft B et al (2011) A European morpho-functional classification of humus forms. Geoderma 164:138–145CrossRefGoogle Scholar
  87. Zarzycky K (1984) Indicator values of vascular plants in Poland. Krakow Institut Bot. Polska Akad, KrakowGoogle Scholar
  88. Zelený D (2014). Use of mean Ellenberg indicator values revisited (again). 23rd EVS-Workshop, Ljubljana 8–12 May 2014: 100Google Scholar
  89. Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci 23:419–431CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2015

Authors and Affiliations

  1. 1.Institute of Biosciences and BioResources (IBBR)CNRPalermoItaly
  2. 2.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  3. 3.Botanical Unit, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly

Personalised recommendations