Advertisement

Rendiconti Lincei

, Volume 26, Supplement 2, pp 183–191 | Cite as

Trapping of gold nanoparticles within arrays of topological defects: evolution of the LSPR anisotropy

  • Emmanuelle LacazeEmail author
  • Olivier Merchiers
  • Yves Borensztein
  • Delphine Coursault
Life, New Materials and Plasmonics

Abstract

We demonstrate how the localized surface plasmon resonance (LSPR) of gold nanoparticles is affected by their trapping within topological defect cores. Using aligned arrays of smectic edge dislocations, we evidence a reversal of the LSPR anisotropy, when the nanoparticle concentration increases. We combine UV–visible spectroscopy with simulations to show that this reversal is related to a transformation of the nanoparticle organization. When the concentration increases, the organization varies from nanoparticle chains parallel to the dislocations to anisotropic nanoparticle ribbons, larger in the direction perpendicular to the dislocations, moreover denser perpendicular to the dislocation than parallel to the dislocations. This transformation may be associated with the localized presence of dense arrays of aligned dislocations, inducing a compression between the NPs, but only in the direction perpendicular to the dislocations.

Keywords

Plasmon Liquid crystals Gold nanoparticles 

References

  1. Coursault D, Grand J, Zappone B, Ayeb H, Lévi G, Félidj N, Lacaze E (2012) Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater 24(11):1461–1465CrossRefGoogle Scholar
  2. Coursault D, Ibrahim BH, Pelliser L, Zappone B, de Martino A, Lacaze E, Gallas B (2014) Modeling the optical properties of self-organized arrays of liquid crystal defects. Opt Express 22(19):23182–23191. doi: 10.1364/OE.22.023182. http://www.opticsexpress.org/abstract.cfm?URI=oe-22-19-23182
  3. Coursault D, Blach J-F, Grand J, Coati A, Zappone B, Babonneau D, Lévi G, Félidj N, Donnio B, Gallani J-L, Alba M, Garreau Y, Borensztein Y, Goldmann M, Lacaze E (2015) Towards a control of anisotropic interactions between soft nanospheres using dense arrays of smectic liquid crystal edge dislocations (submitted)Google Scholar
  4. Garcia MA, de la Venta J, Crespo P, Llopis J, Penades S, Fernandez A, Hernando A (2005) Surface plasmon resonance of capped au nanoparticles. Phys Rev 72:241403CrossRefGoogle Scholar
  5. Géminard J-C, Laroche C, Oswald P (1998) Edge dislocation in a vertical smectic film: line tension versus film thickness and Burgers vector. Phys Rev E 58:5923–5925. doi: 10.1103/PhysRevE.58.5923 CrossRefGoogle Scholar
  6. Girard C (2005) Near fields in nanostructures. Rep Prog Phys 68(8):1883CrossRefGoogle Scholar
  7. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–3605. doi: 10.1021/nn100869j CrossRefGoogle Scholar
  8. Horn RG (1978) Refractive indices and order parameters of two liquid crystals. J Phys France 39(1):105–109. doi: 10.1051/jphys:01978003901010500 CrossRefGoogle Scholar
  9. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  10. Karatairi E, Rozic B, Kutnjak Z, Tzitzios V, Nounesis G, Cordoyiannis G, Thoen J, Glorieux C, Kralj S (2010) Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys Rev E 81:041703CrossRefGoogle Scholar
  11. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111(1):1–35. doi: 10.1016/j.jqsrt.2009.07.012 CrossRefGoogle Scholar
  12. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer series in materials science, vol v. 25. Springer, Berlin. ISBN 9780387578361Google Scholar
  13. Laibnis PE, Nuzzo RG, Whitesides GM (1992) Structure of monolayers formed by coadsorption of 2 normal-alkanethiols of different chain lengths on gold and its relation to wetting. J Phys Chem 96:5097–5105CrossRefGoogle Scholar
  14. Mackowski DW (1994) Calculation of total cross sections of multiple-sphere clusters. J Opt Soc Am A 11(11):2851–2861. doi: 10.1364/JOSAA.11.002851. http://josaa.osa.org/abstract.cfm?URI=josaa-11-11-2851
  15. Michel JP, Lacaze E, Alba M, de Boissieu M, Gailhanou M, Goldmann M (2004) Optical gratings formed in thin smectic films frustrated on a single crystalline substrate. Phys Rev E 70:011709CrossRefGoogle Scholar
  16. Michel JP, Lacaze E, Goldmann M, Gailhanou M, de Boissieu M, Alba M (2006) Structure of smectic defect cores: X-ray study of 8CB liquid crystal ultrathin films. Phys Rev Lett 96(2):027803CrossRefGoogle Scholar
  17. Milette J, Relaix S, Lavigne C, Toader V, Cowling SJ, Saez IM, Lennox RB, Goodby JW, Reven L (2012) Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter 8:6593–6598CrossRefGoogle Scholar
  18. Pelliser L, Manceau M, Lethiec C, Coursault D, Vezzoli S, Lemenager G, Coolen L, DeVittorio M, Pisanello F, Carbone L, Maitre A, Bramati A, Lacaze E (2015) Alignment of rod-shaped single photon emitters driven by line defects in liquid crystals. Adv Funct Mater 25:1719–1726CrossRefGoogle Scholar
  19. Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2(3):136–159. doi: 10.1002/lpor.200810003 CrossRefGoogle Scholar
  20. Pendery JS, Merchiers O, Coursault D, Grand J, Ayeb H, Greget R, Donnio B, Gallani J-L, Rosenblatt C, Felidj N, Borensztein Y, Lacaze E (2013) Gold nanoparticle self-assembly moderated by a cholesteric liquid crystal. Soft Matter 9:9366–9375CrossRefGoogle Scholar
  21. Schapotschnikow P, Pool R, Vlugt TJ (2008) Molecular simulations of interacting nanocrystals. Nano Lett 8(9):2930–2934CrossRefGoogle Scholar
  22. Senyuk B, Evans JS, Ackerman PJ, Lee T, Manna P, Vigderman L, Zubarev ER, van de Lagemaat J, Smalyukh II (2012) Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett 12:955–963CrossRefGoogle Scholar
  23. Tripathy S, Marty R, Lin VK, Teo SL, Ye E, Arbouet A, Saviot L, Girard C, Han MY, Mlayah A (2011) Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers. Nano Lett 11(2):431–437CrossRefGoogle Scholar
  24. Williams C, Kléman M (1975) Dislocation, grain boundaries and focal conics in smectics a. Journal de Physique Colloques 36:1–3151320. doi: 10.1051/jphyscol:1975152 Google Scholar
  25. Yockell-Lelièvre H, Gingras D, Vallée R, Ritcey AM (2009) Coupling of localized surface plasmon resonance in self-organized polystyrene-capped gold nanoparticle films. J Phys Chem C 113(51):21293–21302. doi: 10.1021/jp905063m CrossRefGoogle Scholar
  26. Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Kikuchi H, Ozaki M (2009) Nanoparticle-stabilized cholesteric blue phases. Appl Phys Express 2:121501CrossRefGoogle Scholar
  27. Zappone B, Lacaze E (2008) Surface-frustrated periodic textures of smectic—A liquid crystals on crystalline surfaces. Phy Rev E Stat Nonlinear Soft Matter Phys 78:061704CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2015

Authors and Affiliations

  • Emmanuelle Lacaze
    • 1
    • 2
    Email author
  • Olivier Merchiers
    • 3
  • Yves Borensztein
    • 1
    • 2
  • Delphine Coursault
    • 1
    • 2
    • 4
  1. 1.CNRS UMR 7588Institut des NanoSciences de Paris (INSP)ParisFrance
  2. 2.Sorbonne universités, UPMC Univ Paris 06, UMR 7588Institut des NanoSciences de Paris (INSP)ParisFrance
  3. 3.Centre d’Energétique et de Thermique de Lyon (CETHIL)INSA de Lyon-CNRS-UCBL-INSA de LyonVilleurbanne CedexFrance
  4. 4.The James Franck InstituteChicagoUSA

Personalised recommendations