Rendiconti Lincei

, Volume 26, Supplement 2, pp 193–201 | Cite as

Life sciences through mathematical models

Life, New Materials and Plasmonics

Abstract

This article discusses some of the basic principles of mathematical modeling in life sciences, and in particular the special features that make the modeling task fundamentally different from the traditional reductive modeling. The intricacies of the modeling in living systems are elucidated by simple and tractable examples that underline the problems of parametric models and the issue of non-scalability of the models.

Keywords

Complex systems Parametric models Agent-based models Computational statistics 

Notes

Acknowledgments

The work of Daniela Calvetti was partly supported by Grant number 246665 from the Simons Foundation, and the work of Erkki Somersalo was partly supported by NSF Grant DMS 1016183.

References

  1. Anderson PW (1972) More is different. Science 177:393–396CrossRefGoogle Scholar
  2. Aubert A, Costalat R, Magistretti PJ, Pellerin L (2005) Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci USA 102:16448–16453CrossRefGoogle Scholar
  3. Beauchemin C, Samuel J, Tuszynski J (2005) A simple cellular automaton model for influenza A viral infections. J Theor Biol 232:223–234CrossRefGoogle Scholar
  4. Calvetti D, Somersalo E (2006) Large-scale statistical parameter estimation in complex systems with an application to metabolic models. Multiscale Model Simul 5:1333–1366CrossRefGoogle Scholar
  5. Calvetti D, Somersalo E (2010) Subjective knowledge or objective belief? An oblique look to bayesian methods. In: Large-scale inverse problems and quantification of uncertainty. Wiley, New York, pp 33–70Google Scholar
  6. Calvetti D, Somersalo E (2012) Computational mathematical modeling: an integrated approach across scales (vol. 17). SIAM, PhiladelphiaGoogle Scholar
  7. Calvetti D, Somersalo E (2013) Quantitative in silico analysis of neurotransmitter pathways under steady state conditions. Front Endocrinnol 4:137Google Scholar
  8. Calvetti C, Cheng Y, Somersalo E (2015) A spatially distributed computational model of brain cellular metabolism. J Theor Biol (to appear)Google Scholar
  9. Cobelli C, Renard E, Kovatchev B (2011) Artificial pancreas: past, present, future. Diabetes 60:2672–2682CrossRefGoogle Scholar
  10. Gilbert N (2008) Agent-based models (No. 153). Sage, New YorkGoogle Scholar
  11. Gardner M (1970) Mathematical games. The fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223:120–123CrossRefGoogle Scholar
  12. Hadamard J (1902) Sur les problèmes aux dérivèes partielles et leur signification physique. Princeton Univ Bull 13(1902):49–52Google Scholar
  13. Heino J, Calvetti D, Somersalo E (2010) Metabolica: a statistical research tool for analyzing metabolic networks. Compt Methods Program Biomed 97:151–167CrossRefGoogle Scholar
  14. Immonen T, Gibson R, Leitner T, Miller MA, Arts EJ, Somersalo E, Calvetti D (2012) A hybrid stochasticdeterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay. J Theor Biol 312:120–132CrossRefGoogle Scholar
  15. Immonen T, Somersalo E, Calvetti D (2014) Modeling HIV-1 dynamics and fitness in cell culture across scales. Bull Math Biol 76:486–514CrossRefGoogle Scholar
  16. LeBaron B (2006) Agent-based computational finance. Handb Comput Econ 2:1187–1233CrossRefGoogle Scholar
  17. Mertsching H, Walles T, Hofmann M, Schanz J, Knapp WH (2005) Engineering of a vascularized scaffold for artificial tissue and organ generation. Biomaterials 26:6610–6617CrossRefGoogle Scholar
  18. Ndanguza D, Tchuenche JM, Haario H (2013) Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo. Afrika Mat 24:55–68CrossRefGoogle Scholar
  19. Newton RG (1993) What makes nature tick?. Harvard University Press, CambridgeGoogle Scholar
  20. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791CrossRefGoogle Scholar
  21. Tegmark M (2008) The mathematical universe. Found Phys 38:101–150CrossRefGoogle Scholar
  22. Von Neumann J (1951) The general and logical theory of automata. Cereb Mech Behav 1:41Google Scholar
  23. Wigner EP (1960) The unreasonable effectiveness of mathematics in the natural sciences. Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Commun Pure Appl Math 13:1–14CrossRefGoogle Scholar
  24. Wigner EP (1995) The unreasonable effectiveness of mathematics in the natural sciences. In: philosophical reflections and syntheses. Springer, Berlin Heidelberg, pp 534–549Google Scholar
  25. Wolfram S (2002) A new kind of science. Wolfram Media, ChapaignGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Applied Mathematics, and StatisticsCase Western Reserve UniversityClevelandUSA

Personalised recommendations