Advertisement

Rendiconti Lincei

, Volume 26, Supplement 2, pp 231–237 | Cite as

Applications of nanomaterials in modern medicine

  • Luciano De Sio
  • Giulio Caracciolo
  • Tiziana Placido
  • Daniela Pozzi
  • Roberto Comparelli
  • Ferdinanda Annesi
  • Maria Lucia Curri
  • Angela Agostiano
  • Roberto Bartolino
Life, New Materials and Plasmonics

Abstract

Nanomaterials represent a class of materials based on nanoscale structures. Nanomaterials are currently used in a wide variety of applications, including, optoelectronics, energy conversion, biology health care and medicine. Among different types of nanomaterials, gold nanoparticles have received considerable attention in disease diagnosis and therapy due to their optical and chemical properties (Liz-Marzan in Mater Today 7:26–31, 2004). This paper reports the main optical and photo-thermal properties of gold nanoparticles. Particularly, we show that gold nanorods embedded in cholesteric liquid crystals demonstrate to control the “selective reflection” of a light beam. Investigation of the optical properties of the obtained material reveals an original and efficient tool to detect temperature variations at the nanoscale useful for photo-thermal based therapies applications. Finally, the concept of ‘nanoparticle-protein corona interaction can be exploited for application ranging from regenerative medicine to theranostics.

Keywords

Nanomaterials Plasmonics Photo-thermal therapy Nanomedicine 

Notes

Acknowledgments

The research is supported by the Air Force Office of Scientific Research (AFOSR), Air Force Research Laboratory (AFRL), U.S. Air Force, under grant FA9550-14-1-0050 (P.I. L. De Sio, EOARD 2014/2015) and the Materials and Manufacturing Directorate, AFRL; by 2011 - prot. 2010C4R8M8 and 2012 prot. 2012T9XHH7 PRIN Projects. Fundings have been generously provided to GC by the “Futuro in Ricerca 2008” program funded by the Italian Minister for University and Research (grant no. RBFR08TLPO) and by the Istituto Italiano di Tecnologia, Center for Life Nano Science@Sapienza.

References

  1. Babar IA, Cheng CJ, Booth CJ et al (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci 109:E1695–E1704CrossRefGoogle Scholar
  2. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7(2):171–187CrossRefGoogle Scholar
  3. Baffou G, Bon P, Savatier J, Polleux J et al (2012) Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6:2452–2458CrossRefGoogle Scholar
  4. Cattaneo AG, Gornati R, Bernardini G, Sabbioni E, Manzo L, Gioacchino MD (2014) Nanomedicine for the brain and the eye: disease management in poorly accessible compartments of the body. In: Sahu SC, Casciano DA (eds) Handbook of nanotoxicology, nanomedicine and stem cell use in toxicology. Wiley, New York, pp 223–248CrossRefGoogle Scholar
  5. Cedervall T, Lynch I, Foy M et al (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756CrossRefGoogle Scholar
  6. De Sio L, Placido T, Serak S, Comparelli R et al (2013) nano-localized heating source for photonics and plasmonics. Adv Opt Mater 1(12):899–904CrossRefGoogle Scholar
  7. Diederichs JE (1996) Plasma protein adsorption patterns on liposomes: establishment of analytical procedure. Electrophoresis 17:607–611CrossRefGoogle Scholar
  8. Domínguez A, Suárez-Merino B, Goñi-de-Cerio F (2014) nanoparticles and blood–brain barrier: the key to central nervous system diseases. J Nanosci Nanotechno 14:766–779CrossRefGoogle Scholar
  9. Duncan R, Gaspar R (2011) Nanomedicine (s) under the microscope. Mol Pharm 8:2101–2141CrossRefGoogle Scholar
  10. Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2(1):30–38CrossRefGoogle Scholar
  11. Haque MR, Lee DY, Ahn C-H, Jeong J-H, Byun Y (2014) local co-delivery of pancreatic islets and liposomal clodronate using injectable hydrogel to prevent acute immune reactions in a type 1 diabetes. Pharmaceutical Res 31:2453–2462CrossRefGoogle Scholar
  12. Huang X, Jain PK, El-Sayed I H, El-Sayed MA (2008) Plasmonic photothermal therapy (pptt) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefGoogle Scholar
  13. Jhal RH, Jhal PK, Chaudhury K, Rana SV, Guha SK (2014) An emerging interface between life science and nanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology. Nano Rev 5:22762–22780Google Scholar
  14. Kobayashi H, Watanabe R, Choyke PL (2014) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4:81–89CrossRefGoogle Scholar
  15. Liz-Marzan LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRefGoogle Scholar
  16. Lück M, Paulke BR, Schröder W, Blunk T, Müller R (1998) Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J Biomed Mat Res 39:478–485CrossRefGoogle Scholar
  17. Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine 10:19–34CrossRefGoogle Scholar
  18. Placido T, Comparelli R, Giannici F, Cozzoli PD et al (2009) Photochemical synthesis of water-soluble gold nanorods: the role of silver in assisting anisotropic growth. Chem Mater 21:4192–4202CrossRefGoogle Scholar
  19. Pozzi D, Colapicchioni V, Caracciolo G et al (2014) Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6:2782–2792CrossRefGoogle Scholar
  20. Prashant KJ, El-Sayed IH, ElSayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29CrossRefGoogle Scholar
  21. Richardson HH, Hickman ZN, Govorov AO, Thomas AC et al (2006) thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. Nano Lett 6:783–788CrossRefGoogle Scholar
  22. Saenz del Burgo L, Pedraz J, Orive G (2014) Advanced nanovehicles for cancer management. Drug Discov Today 19:1659–1670CrossRefGoogle Scholar
  23. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799CrossRefGoogle Scholar
  24. Wilson OM, Hu X, Cahill DG, Braun PV (2002) Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys Rev B. 66:224301/1–224301/6CrossRefGoogle Scholar
  25. Wust P, Hildebrandt B, Sreenivasa G, Rau B et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–597CrossRefGoogle Scholar
  26. Yang Z, Chen M, Yang M, Chen J, Fang W, Xu P (2014) Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomed 9:327–336Google Scholar
  27. Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27:286–298CrossRefGoogle Scholar
  28. Zhaorigetu S, Rodriguez-Aguayo C, Sood AK, Lopez-Berestein G, Walton BL (2014) Delivery of negatively charged liposomes into the atherosclerotic plaque of apolipoprotein E-deficient mouse aortic tissue. J Liposome Res 24:182–190CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2015

Authors and Affiliations

  • Luciano De Sio
    • 1
  • Giulio Caracciolo
    • 2
  • Tiziana Placido
    • 3
  • Daniela Pozzi
    • 2
  • Roberto Comparelli
    • 4
  • Ferdinanda Annesi
    • 5
  • Maria Lucia Curri
    • 4
  • Angela Agostiano
    • 3
    • 4
  • Roberto Bartolino
    • 5
    • 6
    • 7
  1. 1.Beam Engineering for Advanced Measurements CompanyWinter ParkUSA
  2. 2.Dipartimento di Medicina MolecolareSapienza Università di RomaRomeItaly
  3. 3.Università degli Studi di BariBariItaly
  4. 4.CNR-IPCF Istituto per i Processi Chimici e Fisici, Sez, BariBariItaly
  5. 5.CNR-IPCF UOSCosenzaItaly
  6. 6.Department of PhysicsUniversity of Calabria Centre of Excellence for the Study of Innovative Functional MaterialsCosenzaItaly
  7. 7.Centro Linceo of the National Academy dei LinceiRomeItaly

Personalised recommendations