Advertisement

Rendiconti Lincei

, Volume 26, Supplement 3, pp 283–288 | Cite as

Soil water deficit and climate conditions during the dry season along the coastal-inland gradient in Castelporziano forest, central Italy

  • Valerio Moretti
  • Rosanna Di BartolomeiEmail author
  • Tiziano Sorgi
  • Rita Aromolo
  • Luca Salvati
Coastal Forest Ecosystem near Rome

Abstract

Summer precipitation and temperature regimes have been compared along the coastal-inland gradient in three sites (Tor Paterno and Castello in Castelporziano forest and Collegio Romano in inner Rome, central Italy) during the last 15 years (1999–2013). Soil water budget using rainfall, evapotranspiration and maximum water capacity of the soil was calculated according to Thornthwaite–Mather approach for the two forest sites. Meteorological conditions during the dry season were found significantly different in the three sites with minimum temperatures increasing from the coastal site (Tor Paterno) to the inland area (Castello and Rome). Maximum temperatures showed a less marked coastal-inland gradient. Cumulative summer rainfalls (accounting for less than the 10 % of annual precipitation) were comparable in the three sites along with a high variability. Although soil water budget variables (available water content and water deficit) were similar in the two forest sites, the aridity index was higher in the inland site than in the coastal site. Despite based on a relatively short climatic time-series, implications of the climate variations observed along the coastal-inland gradient in Castelporziano are discussed in the light of conservation of the residual pristine flat oakwood stands and the traditional agro-forest landscape mosaic.

Keywords

Climate variations Agro-forest systems Aridity Coastal areas Central Italy Mediterranean region 

Notes

Acknowledgments

The authors thank the General Secretariat of the Presidency of the Republic, the management of the Estate of Castelporziano, the Technical-Scientific Commission of Castelporziano estate, the National Academy of Sciences and the Observatory of Mediterranean Coastal Ecosystems for financing the present study. Dr. A. Tinelli enthusiastically supported this study over time. Finally, thanks are due to F. Ilardi for the collaboration in data collection.

References

  1. Bajocco S, De Angelis A, Perini A, Ferrara A, Salvati L (2012) The impact of land use/land cover changes on land degradation dynamics: a Mediterranean perspective. Environ Manag 49(5):980–989CrossRefGoogle Scholar
  2. Brunetti M, Mangianti F, Maugeri M, Nanni T (2000) Urban heat island bias in Italian air temperature series. Il Nuovo Cimento 23C:423–431Google Scholar
  3. Brunetti M, Maugeri M, Nanni T, Navarra A (2002) Droughts and extreme events in regional daily Italian precipitation series. Int J Climatol 22:543–558CrossRefGoogle Scholar
  4. Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int J Climatol 26:345–381CrossRefGoogle Scholar
  5. Brunt D (2011) Physical and dynamical meteorology. Cambridge University PressGoogle Scholar
  6. Founda D, Giannakopoulos C (2009) The exceptionally hot summer of 2007 in Athens, Greece—a typical summer in the future climate? Glob Planet Chang 67:227–236CrossRefGoogle Scholar
  7. Garcia Latorre J, Garcia-Latorre J, Sanchez-Picon A (2001) Dealing with aridity: socio-economic structures and environmental changes in an arid Mediterranean region. L Use Policy 18:53–64CrossRefGoogle Scholar
  8. Grignetti A, Salvatori R, Casacchia R, Manes F (1997) Mediterranean vegetation analysis by multi-temporal satellite sensor data. Int J Remote Sens 18(6):1307–1318CrossRefGoogle Scholar
  9. Gualdi S, Navarra A (2005) Scenari climatici nel bacino mediterraneo. Istituto Nazionale di Geofisica e Vulcanologia, BolognaGoogle Scholar
  10. Holton JR, Hakim GJ (2012) An introduction to dynamic meteorology. ElsevierGoogle Scholar
  11. Incerti G, Feoli E, Giovacchini A, Salvati L, Brunetti A (2007) Drought estimation through a neural network approach. Int J Biometeorol 51:253–263CrossRefGoogle Scholar
  12. IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis. http://www.ipcc.ch/report/ar5/wg1/ accessed January 2014
  13. Mather JR, Bullock A, Woodings RB (1978) The climatic water budget in environmental analysis. Lexington Books, New YorkGoogle Scholar
  14. Mavrakis A, Spanou A, Pantavou K, Katavoutas G, Theoharatos G, Christides A, Verouti E (2010) Biometeorological and air quality assessment in an industrialized area of eastern Mediterranean–Thriassion Plain-Greece. Int J Biometeorol 56(4):737–747CrossRefGoogle Scholar
  15. Moretti R, Mecella G, Moretti V (2006) Caratteristiche climatiche della Tenuta Presidenziale di Castelporziano. In: Scarascia Mugnozza GT (ed) Il sistema ambientale della Tenuta Presidenziale di Castelporziano. Segretariato Generale della Presidenza della Repubblica, II serie. Accademia Nazionale delle Scienze detta dei Quaranta, “Scritti e documenti”, XXXVII, RomeGoogle Scholar
  16. Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262CrossRefGoogle Scholar
  17. Salvati L, Zitti M (2007) Territorial disparities, natural resource distribution, and land degradation: a case study in southern Europe. Geo J 70:185–194Google Scholar
  18. Salvati L, Zitti M, Ceccarelli T, Perini L (2008a) Sensitivity to land degradation: monitoring ecological and human factors in a Mediterranean area (1970–2000). Ecologia Mediterranea 34:53–64Google Scholar
  19. Salvati L, Petitta M, Ceccarelli T, Perini L, Di Battista F, Venezian Scarascia ME (2008b) Italy’s renewable water resources as estimated on the basis of the monthly water balance. Irrig Drain 57:507–515CrossRefGoogle Scholar
  20. Salvati L, Venezian Scarascia ME, Zitti M (2009) Monitoring drought severity in agriculture through a synthetic index based on dry periods: a case study in the Mediterranean basin. Irrig Drain 58(5):596–606CrossRefGoogle Scholar
  21. Salvati L, Perini L, Bajocco S, Sabbi A (2012) Climate aridity and land use change: a regional-scale analysis. Geogr Res 50(2):193–203CrossRefGoogle Scholar
  22. Scarascia Mugnozza GT (2001) Il Sistema Ambientale della Tenuta Presidenziale di Castelporziano. Accademia Nazionale delle Scienze detta dei Quaranta, Scritti e Documenti, XXVI, RomeGoogle Scholar
  23. Sivakumar MVK (2007) Interactions between climate and desertification. Agric For Meteorol 142:143–155CrossRefGoogle Scholar
  24. Tombesi L (1982) Elementi di agroclimatologia e valutazione della produttività ambientale. Caratteristiche pedoagronomiche e agroclimatologia, Istituto Sperimentale per la Nutrizione delle Piante, RomeGoogle Scholar
  25. Venezian Scarascia ME, Di Battista F, Salvati L (2006) Water resources in Italy: availability and agricultural uses. Irrig Drainage 55:115–127CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2014

Authors and Affiliations

  • Valerio Moretti
    • 1
    • 2
  • Rosanna Di Bartolomei
    • 1
    • 3
    Email author
  • Tiziano Sorgi
    • 1
  • Rita Aromolo
    • 1
  • Luca Salvati
    • 1
  1. 1.Consiglio per la Ricerca e la sperimentazione in Agricoltura Centro per lo studio delle Relazioni Pianta-Suolo (CRA-RPS)RomeItaly
  2. 2.Accademia Nazionale delle Scienze detta dei XLRomeItaly
  3. 3.Università di Roma ‘La Sapienza’, Dottorato ‘Progettazione dell’Ambiente e del Paesaggio’RomeItaly

Personalised recommendations