Advertisement

Rendiconti Lincei

, Volume 25, Supplement 1, pp 39–47 | Cite as

Fractal analysis of shape changes in murine osteoblasts cultured under simulated microgravity

  • Fabrizio Testa
  • Alessandro Palombo
  • Simona Dinicola
  • Fabrizio D’Anselmi
  • Sara Proietti
  • Alessia Pasqualato
  • Maria Grazia Masiello
  • Pierpaolo Coluccia
  • Alessandra Cucina
  • Mariano BizzarriEmail author
COSMIC RADIATION: Sino-Italian Cooperation

Abstract

Morphological changes have been reported to occur in cells exposed to microgravity, even if quantitative (i.e., fractal) analysis has been never performed on cell shape. We investigated cell shape as well as cytoskeleton modifications induced by simulated microgravity on murine osteoblasts (MC3T3-E1) growing in vitro by means of fractal analysis. On average, after 48–72 h of exposition to microgravity, osteoblasts display significant changes in shape profile, recovering a more rounded phenotype characterized by larger surface area than controls. More specifically, microgravity enacted the emergence of two distinct morphological phenotypes, one of which characterized by an increase in membrane fractal values, surface area, and roundness. Moreover, osteoblasts exposed to microgravity undergo significant functional changes (inhibited growth proliferation, increased apoptosis, β1-integrin decrease, impaired Akt and Erk phosphorylation) that could likely concur in explaining the observed alteration in bone structure experienced by astronauts.

Keywords

Osteoblast Fractal dimension Microgravity Symmetry breaking Shape 

Notes

Acknowledgments

This work was funded by ASI (Italian Space Agency), LIGRA Program.

References

  1. Albrecht-Buehler G (1991) Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull 4(2):25–34Google Scholar
  2. Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315(823–829):2004Google Scholar
  3. Bizzarri M, Giuliani A (2011) Representing cancer cell trajectories in a phase-space diagram: switching cellular states by biological phase transitions. In: Dehmer M, Emmert-Streib F, Graber A, Salvador A (eds) Applied statistics for network biology: methods in systems biology. Wiley-VCH Verlag GmbH & Co. KGaA, GermanyGoogle Scholar
  4. Bizzarri M, Saggese E (2012) Human space flights: facts and dreams. Ann Kinesiol 2(2):103–116Google Scholar
  5. Bizzarri M, Giuliani A, Cucina A, D’Anselmi F, Soto AM, Sonnenschein C (2011) Fractal analysis in a systems biology approach to cancer. Semin Cancer Biol 21(3):175–182CrossRefGoogle Scholar
  6. Bizzarri M, Pasqualato A, Cucina A, Pasta V (2013a) Physical forces and non linear dynamics mould fractal cell shape. Quantitative morphological parameters and cell phenotype. Histol Histopathol 28(2):155–174Google Scholar
  7. Bizzarri M, Palombo A, Cucina A (2013b) Theoretical aspects of systems biology. Prog Biophys Mol Biol 112(1–2):33–43CrossRefGoogle Scholar
  8. Cutting JE, Garvin JJ (1987) Fractal curves and complexity. Percept Psicophysiol 42:365–370CrossRefGoogle Scholar
  9. Dinicola S, D’Anselmi F, Pasqualato A, Proietti S, Lisi E, Cucina A, Bizzarri M (2011) A systems biology approach to cancer: fractals, attractors, and non-linear dynamics. OMICS 15(3):93–104CrossRefGoogle Scholar
  10. Ferreira T, Rasband W (2012) ImageJ user guide IJ 1.46r. http://www.imageJ.org
  11. Flusberg DA, Nimaguchi Y, Ingber DE (2001) Cooperative control of Akt phosphorylation, bcl-2 expression and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 12:3087–3094CrossRefGoogle Scholar
  12. Gaboyard S, Blanchard MP, Travo BT, Viso M, Sans A, Lehouelleur J (2002) Weightlessness affects cytoskeleton of rat utricular hair cells during maturation in vitro. Neuroreport 13(16):2139–2142CrossRefGoogle Scholar
  13. Honga D, Chen H-X, Yuc H-Q, Lianga Y, Wanga C, Liand Q-Q, Dengc H-T, Gea R-S (2010) Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp Cell Res 316:2291–2300CrossRefGoogle Scholar
  14. Hughes-Fulford M (2002) Physiological effects of microgravity on osteoblast morphology and cell biology. Adv Space Biol Med 8:129–157CrossRefGoogle Scholar
  15. Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32(8):1585–1593CrossRefGoogle Scholar
  16. Ingber DE, Tensegrity I (2003) Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173CrossRefGoogle Scholar
  17. Johnson PR (1979) Prolonged weightlessness and calcium loss in man. Acta Astronaut 6:1113–1122CrossRefGoogle Scholar
  18. Kheradmand F, Werner E, Tremble P, Symons M, Werb Z (1998) Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280:898–902CrossRefGoogle Scholar
  19. Kondepudi DK, Storm PB (1992) Gravity detection through bifurcation. Adv Space Res 12(1):7–14CrossRefGoogle Scholar
  20. Losa GA (2009) The fractal geometry of life. Riv Biol Biol Forum 102(1):29–59Google Scholar
  21. Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New YorkGoogle Scholar
  22. Marie PJ, Jones D, Vico L, Zallone A, Hinsenkamp M, Cancedda R (2000) Osteobiology, strain, and microgravity. Part I. Studies at the cellular level. Calcif Tissue Int 67:2–9CrossRefGoogle Scholar
  23. Owan I, Burr DB, Turner CH, Qiu J, Tu Y, Onyia JE, Duncan RL (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol 273:C810–C815Google Scholar
  24. Papaseit C, Pchon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci USA 8(15):8364–8368CrossRefGoogle Scholar
  25. Patel PMJ, Sykes MC, Platt MO, Boyd NL, Sorescu GP, Xu M, van Loon JJWA, May D, Wang MD, Jo H (2005) Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am J Physiol Cell Physiol 288:C1211–C1221CrossRefGoogle Scholar
  26. Qian AR, Li D, Han J, Gao X, Di SM, Zhang W, Hu LF, Shang P (2012) Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Trans Biomed Eng 59(5):1374–1380CrossRefGoogle Scholar
  27. Rittweger J, Simunic B, Bilancio G, De Santo NG, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44:612–618CrossRefGoogle Scholar
  28. Smith TG Jr, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology. J Neurosci Methods 69:1123–126. http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm Google Scholar
  29. Sytkowski AJ, Davis KL (2001) Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotation wall vessel bioreactor. In Vitro Cell Dev Biol Anim 37:79–83CrossRefGoogle Scholar
  30. Tél T (1988) Fractals, multifractals and thermodynamics. Z Naturforsch 43a:1154–1174Google Scholar
  31. Usson N, Laroche A, Caillot-Augusseau C, Alexandre L (2001) Vico, cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB J 15(11):2036–2038Google Scholar
  32. Van Loon JWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39:1161–1165CrossRefGoogle Scholar
  33. Vico L (2006) What do we know about alteration in the osteoblast phenotype with microgravity? J Musculoskelet Neuronal Interact 6(4):317–318Google Scholar
  34. Vico L, Lafage-Proust MH, Alexandrfe C (1998) Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22:95S–100SCrossRefGoogle Scholar
  35. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2014

Authors and Affiliations

  • Fabrizio Testa
    • 1
  • Alessandro Palombo
    • 2
    • 3
  • Simona Dinicola
    • 3
    • 5
  • Fabrizio D’Anselmi
    • 1
    • 3
  • Sara Proietti
    • 3
    • 5
  • Alessia Pasqualato
    • 3
    • 4
  • Maria Grazia Masiello
    • 3
    • 5
  • Pierpaolo Coluccia
    • 3
  • Alessandra Cucina
    • 3
  • Mariano Bizzarri
    • 1
    Email author
  1. 1.Department of Experimental Medicine, Systems Biology GroupUniversity La SapienzaRomeItaly
  2. 2.Systems Biology GroupUniversity Tor VergataRomeItaly
  3. 3.Department of Surgery “Pietro Valdoni”University La SapienzaRomeItaly
  4. 4.Department of Basic and Applied Medical ScienceUniversity G. D’AnnunzioChietiItaly
  5. 5.Department of Clinical and Molecular MedicineUniversity La SapienzaRomeItaly

Personalised recommendations