Rendiconti Lincei

, Volume 24, Issue 4, pp 319–328 | Cite as

Aerosol dynamics upon Terni basin (Central Italy): results of integrated vertical profile measurements and electron microscopy analyses

  • Beatrice Moroni
  • Luca Ferrero
  • Stefano Crocchianti
  • Maria Grazia Perrone
  • Giorgia Sangiorgi
  • Ezio Bolzacchini
  • David Cappelletti
Article

Abstract

In this work, aerosol size distribution measurements along with individual particle analyses were performed along the vertical profile in the atmosphere, to shed some light on the dynamics of evolution of aerosol properties upon a basin valley. The case study is the Terni basin, one of the most polluted urban and industrial sites in central Italy. Aerosol vertical profile measurements were performed using a helium-filled tethered balloon equipped with an optical particle counter (OPC), a miniaturized cascade impactor with particle collection filter, and a portable meteorological station. Combined OPC number size measurements and single particle analyses by scanning electron microscopy were employed to reconstruct the pattern and evolution of aerosol properties over the basin. Moreover, the CHIMERE chemistry-transport model was applied over a selected computing domain to obtain a general overview of the driving forces of the aerosol dynamics. Scanning electron microscopy methods along with chemical transport modeling revealed distinct distributions of number, size and geochemical properties of different particles classes in the aerosols. These reflect distinct behaviours and spatial/temporal evolution of the constituent particles, along with the common occurrence of dust inputs from regional to long range sources (e.g., Saharan dust inputs). All these features have to be taken into consideration when approaching the modeling of atmospheric processes, particularly in basin valleys located in Central and Southern Italy where the influence of Saharan dust outbreaks is more pronounced.

Keywords

Size distribution Particle morphochemistry Optical particle counter Scanning electron microscopy CHIMERE chemistry-transport model 

Notes

Acknowledgments

Prof. Giorgio Liuti died during the preparation of the manuscript. This work and our future endeavours are dedicated to him, whose intellectual honesty and genuine love of chemistry continue to inform our scientific life. We thank Fondazione CARIT di Terni e Narni for financial support to this research. We also thank ARPA Umbria for providing detailed regional emission data.

Supplementary material

12210_2013_230_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 88 kb)
12210_2013_230_MOESM2_ESM.pdf (156 kb)
Supplementary material 2 (PDF 155 kb)

References

  1. Archuleta CM, DeMott PJ, Kreidenweis SM (2005) Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos Chem Phys Discuss 5:3391–3436CrossRefGoogle Scholar
  2. Capannelli G, Castello E, Comite A, Costa A, Mamolini G (2011) Electron microscopy characterization of airborne micro- and nanoparticulate matter. J Electron Microsc 60(2):117–131CrossRefGoogle Scholar
  3. Casuccio GS, Lersch TL, Schlaegle SF, Martello DV (2002) Characterization of ambient carbonaceous particles using electron microscopy techniques. Fuel Chem Div Preprints 47(2):624–626Google Scholar
  4. Coz E, Gómez-Moreno FJ, Pujadas M, Casuccio GS, Lersch TL, Begona Artinano (2009) Individual particle characteristics of North African dust under different long-range transport scenarios. Atmos Environ 43:1850–1863CrossRefGoogle Scholar
  5. Ferrero L, Cappelletti D, Moroni B, Sangiorgi G, Perrone MG, Crocchianti S, Bolzacchini E (2012) Wintertime aerosol dynamics and chemical composition across the mixing layer over basin valleys. Atmos Environ 56:143–153CrossRefGoogle Scholar
  6. Henne S, Furger M, Nyeki S, Steinbacher M, Neininger B, de Wekker SFJ, Dommen J, Spichtinger N, Stohl A, Prévot ASH (2004) Quantification of topographic venting of boundary layer air to the free troposphere. Atmos Chem Phys 4:497–509CrossRefGoogle Scholar
  7. ICSU (2011) Report of the ICSU Planning Group on Health and Wellbeing in the Changing Urban Environment: a systems analysis approach. International Council for Science, ParisGoogle Scholar
  8. Jacobson MZ (1999) Fundamentals of atmospheric modelling. Cambridge University Press, CambridgeGoogle Scholar
  9. Kandler K, Benker N, Bundke U, Cuevas E, Ebert M, Knippertz P et al (2007) Chemical composition and complex refractive index of Saharan mineral dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos Environ 41:8058–8074CrossRefGoogle Scholar
  10. Liu X, Zhu J, Van Espen P, Adams F, Xiao R, Dong S, Li Y (2005) Single particle characterization of spring and summer aerosols in Beijing: formation of composite sulphate of calcium and potassium. Atmos Environ 39:6909–6918CrossRefGoogle Scholar
  11. Moroni B, Viti C (2009) Grain size, chemistry, and structure of fine and ultrafine particles in stainless steel welding fumes. J Aerosol Sci 40:938–949CrossRefGoogle Scholar
  12. Moroni B, Cappelletti D, Marmottini F, Scardazza F, Ferrero L, Bolzacchini E (2012) Integrated single particle-bulk chemical approach for the characterization of local and long range sources of particulate pollutants. Atmos Environ 50:267–277CrossRefGoogle Scholar
  13. Moroni B, Viti C, Cappelletti D (2013) Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries. J Expo Sci Environ Epidemiol. doi: 10.1038/jes.2013.3
  14. Perrone MG, Larsen B, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modeling. Sci Total Environ 414:343–355CrossRefGoogle Scholar
  15. Pöschl U (2005) Atmospheric aerosol: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540CrossRefGoogle Scholar
  16. Rodriguez S, Van Dingenen R, Putaud JP, Dell’Acqua A, Pey J, Querol X et al (2007) A study of the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosol in Milan, Barcelona and London. Atmos Chem Phys 7:2217–2232CrossRefGoogle Scholar
  17. Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier Ph (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRefGoogle Scholar
  18. Seinfeld JH, Pandis SN (1996) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York, pp 812–823Google Scholar
  19. Sinha BW, Hoppe P, Huth J, Foley S, Andreae MO (2008) Sulfur isotope analyses of individual aerosol particles in the urban aerosol at a central European site (Mainz, Germany). Atmos Chem Phys 8:7217–7238CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2013

Authors and Affiliations

  • Beatrice Moroni
    • 1
    • 4
  • Luca Ferrero
    • 2
  • Stefano Crocchianti
    • 3
  • Maria Grazia Perrone
    • 2
  • Giorgia Sangiorgi
    • 2
  • Ezio Bolzacchini
    • 2
  • David Cappelletti
    • 3
    • 4
  1. 1.Dipartimento di Ingegneria Civile ed AmbientaleUniversità di PerugiaPerugiaItaly
  2. 2.Dipartimento di Scienze Ambientali, Centro Ricerca POLARISUniversità di Milano-BicoccaMilanItaly
  3. 3.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly
  4. 4.Centro di Eccellenza SMAArtUniversità di PerugiaPerugiaItaly

Personalised recommendations