Rendiconti Lincei

, Volume 22, Supplement 1, pp 93–107

Time-resolved structure investigation with small angle X-ray scattering using scanning techniques

Article

Abstract

Due to the availability of high-brilliance X-rays at synchrotron radiation facilities, small angle X-ray scattering (SAXS) measurements have become feasible for new sample environments, like microfluidics or aerosol systems. The combination of continuous flow methods and SAXS with spatial scanning enables in situ measurements of time-resolved structures at the nanoscale important for reactions kinetics and material synthesis and processing. In this review we present the latest achievements in terms of scanning SAXS along continuous flow mixing devices reducing the limit of time resolution at the microsecond range. This led to the determination of early stages of biological reactions like protein folding, and to gain insight into chemical reaction kinetics like nanoparticles formation. We also describe the coupling of scanning SAXS with aerosol generators, which is the only way to study the mechanisms for the self-assembly and aggregation of nanomaterials via the aerosol route. We finally give a brief outlook, as the potentiality of these techniques has not been fully exploited, leaving the possibility for further improvements in time resolution and sample consumption, for example with the new X-ray sources like Free Electron Lasers.

Keywords

Small angle scattering X-ray structure analysis Aerosol Microfluidics Nucleation and growth Fast chemical reaction Self-assembly Mesostructures 

References

  1. Akiyama S, Takahashi S, Kimura T, Ishimori K, Morishima I, Nishikawa Y, Fujisawa T (2002) Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle X-ray scattering. PNAS 99:1329–1334CrossRefGoogle Scholar
  2. Arai M, Kondrashkina E, Kayatekin C, Matthews CR, Iwakura M, Bilsel O (2007) Microsecond hydrophobic collapse in the folding of escherichia coli dihydrofolate reductase, an alpha/beta-type protein. J Mol Biol 368:219–229CrossRefGoogle Scholar
  3. Bahadur J, Sen D, Mazumder S, Paul B, Sharma IG (2010) Synthesis of porous silica grains using PEG as template via evaporation driven self assembly. AIP Conf Proc 1313:146–148CrossRefGoogle Scholar
  4. Beaucage G, Kammler HK, Mueller R, Strobel R, Agashe N, Pratsinis SE, Narayanan T (2004a) Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nat Mater 3:370–374CrossRefGoogle Scholar
  5. Beaucage G, Kammler HK, Pratsinis SE (2004b) Particle size distributions from small-angle scattering using global scattering functions. J Appl Crystallogr 37:523–535CrossRefGoogle Scholar
  6. Beaucage G, Schaefer DW (1994) Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach. J Non-Cryst Solids 172–174(2):797–805Google Scholar
  7. Bergmann A, Fritz G, Glatter O (2000) Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr 33:1212–1216CrossRefGoogle Scholar
  8. Boissiere C, Grosso D, Amenitsch H, Gibaud A, Coup A, Baccile N, Sanchez C (2003) First in situ SAXS studies of the mesostructuration of spherical silica and titania particles during spray-drying process. Chem Commun 9:2798–2799CrossRefGoogle Scholar
  9. Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23:599–623CrossRefGoogle Scholar
  10. Bolze J, Peng B, Dingenouts N, Panine P, Narayanan T, Ballauff M (2002) Formation and growth of amorphous colloidal CaCO3 precursor particles as detected by time-resolved SAXS. Langmuir 18:8364–8369CrossRefGoogle Scholar
  11. Bolze J, Pontoni D, Ballauff M, Narayanan T, Colfen H (2004) Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO3 from a supersaturated salt solution. J Coll Int Sci 277:84–94CrossRefGoogle Scholar
  12. Brennich ME, Nolting JF, Dammann C, Noeding B, Bauch S, Herrmann H, Pfohl T, Koester S (2011) Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. Lab Chip Miniaturisation Chem Biol 11:708–716CrossRefGoogle Scholar
  13. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRefGoogle Scholar
  14. Camenzind A, Schulz H, Teleki A, Beaucage G, Narayanan T, Pratsinis SE (2008) Nanostructure evolution: from aggregated to spherical SiO2 particles made in diffusion flames. Eur J Inorg Chem 2008:911–918Google Scholar
  15. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U, Doak RB, Maia FRNC, Martin AV, Schlichting I, Lomb L, Coppola N, Shoeman RL, Epp SW, Hartmann R, Rolles D, Rudenko A, Foucar L, Kimmel N, Weidenspointner G, Holl P, Liang M, Barthelmess M, Caleman C, Boutet S, Bogan MJ, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Âmke AH, Reich C, Pietschner D, StrÂder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel KU, Messerschmidt M, Bozek JD, Hau-Riege SP, Frank M, Hampton CY, Sierra RG, Starodub D, Williams GJ, Hajdu J, Timneanu N, Seibert MM, Andreasson J, Rocker A, Jonsson O, Svenda M, Stern S, Nass K, Andritschke R, Schroter CD, Krasniqi F, Bott M, Schmidt KE, Wang X, Grotjohann I, Holton JM, Barends TRM, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence JCH (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–78Google Scholar
  16. DePonte DP, Nass K, Stellato F, Liang M, Chapman HN (2011) Sample injection for pulsed x-ray sources. 8078Google Scholar
  17. Feigin LA, Svergun D (1987) Structure analysis by small X-ray angle scattering and neutron scattering. Plenum Press, London New YorkGoogle Scholar
  18. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346CrossRefGoogle Scholar
  19. Gardner C, Greaves GN, Hargrave GK, Jarvis S, Wildman P, Meneau F, Bras W, Thomas G (2005) In situ measurements of soot formation in simple flames using small angle X-ray scattering. Nucl Instrum Methods Phys Res B 238:334–339CrossRefGoogle Scholar
  20. Haberkorn H, Franke D, Frechen T, Goesele W, Rieger J (2003) Early stages of particle formation in precipitation reactions—quinacridone and boehmite as generic examples. J Coll Int Sci 259:112–126CrossRefGoogle Scholar
  21. Hartridge H, Roughton FJW (1923) Method of measuring the velocity of very rapid chemical reactions. Proc R Soc Lond A 104:376–394CrossRefGoogle Scholar
  22. Hessler JP, Seifert S, Winans RE, Fletcher TH (2001) Small-angle X-ray studies of soot inception and growth. Faraday Disc 395–407Google Scholar
  23. Jossen R, Heine MC, Beaucage G, Narayanan T, Pratsinis SE (2006) Nano-ZrO2 growth dynamics in flames spray by small angle X-ray scatteringGoogle Scholar
  24. Jungnikl K, Rappolt M, Shyjumon I, Sartori B, Laggner P, Amenitsch H (2011) Aerosol flow reactor with controlled temperature gradient for in situ gas-phase X-ray experiments-measurements of evaporation-induced self-assembly (EISA) in aerosols. Aerosol Sci Technol 45:805–810CrossRefGoogle Scholar
  25. Kathuria SV, Guo L, Graceffa R, Barrea R, Nobrega RP, Matthews CR, Irving TC, Bilsel O (2011) Minireview: structural insights into early folding events using continuous-flow time-resolved small-angle X-ray scattering. Biopolymers 95:550–558CrossRefGoogle Scholar
  26. Kim WY, Sorensen CA, Fry D, Chakrabarti A (2006) Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames. J Aerosol Sci 37:386–401CrossRefGoogle Scholar
  27. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Phys Rev Lett 80:3863–3866CrossRefGoogle Scholar
  28. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286CrossRefGoogle Scholar
  29. Leng J, Salmon JB (2009) Microfluidic crystallization. Lab Chip Miniaturisation Chem Biol 9:24–34CrossRefGoogle Scholar
  30. Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Ferrari E, Laggner P, Businaro L, Amenitsch H (2009) Free jet micromixer to study fast chemical reactions by small angle X-ray scattering. Lab on a Chip 9:2063–2069CrossRefGoogle Scholar
  31. Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Laggner P, Businaro L, Amenitsch H (2010) Experimental set-up for time resolved small angle X-ray scattering studies of nanoparticles formation using a free-jet micromixer. Nucl Instr Methods Phy Res B Beam Inter Mater Atoms 268:329–333CrossRefGoogle Scholar
  32. Martel A, Burghammer M, Davies RJ, Di Cola E, Vendrely C, Riekel C (2008) Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and raman spectroscopy. J Am Chem Soc 130:17070–17074CrossRefGoogle Scholar
  33. Martin HP, Brooks NJ, Seddon JM, Terrill NJ, Luckham PF, Kowalski AJ, Cabral JT (2010) Complex fluids under microflow probed by SAXS: rapid microfabrication and analysis. J Phys Conf Ser 247Google Scholar
  34. Merlin A, Angly J, Daubersies L, Madeira C, Schoeder S, Leng J, Salmon JB (2011) Time-resolved microfocused small-angle X-ray scattering investigation of the microfluidic concentration of charged nanoparticles. Eur Phys J E 34. doi:10.1140/epje/i2011-11058-y
  35. Otten A, Koster S, Struth B, Snigirev A, Pfohl T (2005) Microfluidics of soft matter investigated by small-angle X-ray scattering. J Synchr Rad 12:745–750CrossRefGoogle Scholar
  36. Panine P, Finet S, Weiss TM, Narayanan T (2006) Probing fast kinetics in complex fluids by combined rapid mixing and small-angle X-ray scattering. Adv Coll Interf Sci 127:9–18CrossRefGoogle Scholar
  37. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Coll Interf Sci 70:171–210CrossRefGoogle Scholar
  38. Pfohl T, Otten A, ster S, Dootz R, Struth B, Evans HM (2007) Highly packed and oriented DNA mesophases identified using in situ microfluidic x-ray microdiffraction. Biomacromolecules 8:2167–2172CrossRefGoogle Scholar
  39. Pollack L, Tate MW, Darnton NC, Knight JB, Gruner SM, Eaton WA, Austin RH (1999) Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. In: Proceedings of the national academy of sciences of the United States of America, vol 96, pp 10115–10117Google Scholar
  40. Pollack L, Tate MW, Finnefrock AC, Kalidas C, Trotter S, Darnton NC, Lurio L, Austin RH, Batt CA, Gruner SM, Mochrie SGJ (2001) Time resolved collapse of a folding protein observed with small angle X-ray scattering. Phys Rev Lett 86:4962CrossRefGoogle Scholar
  41. Polte J, Erler R, Thunemann AF, Sokolov S, Ahner TT, Rademann K, Emmerling F, Kraehnert R (2010) Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. Acs Nano 4:1076–1082CrossRefGoogle Scholar
  42. Russell R, Millett IS, Doniach S, Herschlag D (2000) Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat Struct Biol 7:367–370CrossRefGoogle Scholar
  43. Russell R, Millettt IS, Tate MW, Kwok LW, Nakatani B, Gruner SM, Mochrie SGJ, Pande V, Doniach S, Herschlag D, Pollack L (2002) Rapid compaction during RNA folding. In: Proceedings of the national academy of sciences of the United States of America, vol 99, pp 4266–4271Google Scholar
  44. Schmid F, Sommer G, Rappolt M, Schulze-Bauer CAJ, Regitnig P, Holzapfel GA, Laggner P, Amenitsch H (2005) In situ tensile testing of human aortas by time-resolved small-angle X-ray scattering. J Synchr Rad 12:727–733CrossRefGoogle Scholar
  45. Schmidt W, Bussian P, Linden M, Amenitsch H, Agren P, Tiemann M, Schuth F (2010) Accessing ultrashort reaction times in particle formation with SAXS experiments: ZnS precipitation on the microsecond time scale. J Am Chem Soc 132:6822–6826CrossRefGoogle Scholar
  46. Seibert MM, Ekeberg T, Maia FRNC, Svenda M, Andreasson J, Jonsson O, Odic D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte DP, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White TA, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie JM, Bostedt C, Bozek JD, Boutet S, Miahnahri AA, Messerschmidt M, Krzywinski J, Williams G, Hodgson KO, Bogan MJ, Hampton CY, Sierra RG, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence JCH, Fromme P, Weierstall U, Kirian R, Hunter M, Doak RB, Marchesini S, Hau-Riege SP, Frank M, Shoeman RL, Lomb L, Epp SW, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Homke A, Reich C, Pietschner D, Weidenspointner G, Stroder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel KU, Andritschke R, Schroter CD, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman HN, Hajdu J (2011) Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470:78–82Google Scholar
  47. Sen D, Melo JS, Bahadur J, Mazumder S, Bhattacharya S, D’Souza SF (2010) Morphological deformation during evaporation induced assembly of mixed colloidal suspension. 1313:97–99Google Scholar
  48. Sen D, Spalla O, Tache O, Haltebourg P, Thill A (2007) Slow drying of a spray of nanoparticles dispersion. In situ SAXS investigation. Langmuir 23:4296–4302CrossRefGoogle Scholar
  49. Shyjumon I, Rappolt M, Sartori B, Amenitsch H, Laggner P (2008) Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering. Rev Sci Instr 79Google Scholar
  50. Shyjumon I, Rappolt M, Sartori B, Cacho-Nerin F, Grenci G, Laggner P, Amenitsch H (2011) Mesostructured silica aerosol particles: comparison of gas-phase and powder deposit X-ray diffraction data. Langmuir 27:5542–5548CrossRefGoogle Scholar
  51. Sorensen CM, Kim W, Fry D, Shi D, Chakrabarti A (2003) Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames. Langmuir 19:7560–7563CrossRefGoogle Scholar
  52. Spalla O, Lyonnard S, Testard F (2003) Analysis of the small-angle intensity scattered by a porous and granular medium. J Appl Crystallogr 36:338–347CrossRefGoogle Scholar
  53. Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108CrossRefGoogle Scholar
  54. Sztucki M, Narayanana T, Beaucage G (2007) In situ study of aggregation of soot particles in an acetylene flame by small-angle X-ray scattering. J Appl Phys 101Google Scholar
  55. Uzawa T, Kimura T, Ishimori K, Morishima I, Matsui T, Ikeda-Saito M, Takahashi S, Akiyama S, Fujisawa T (2006) Time-resolved small-angle X-ray scattering investigation of the folding dynamics of heme oxygenase: Implication of the scaling relationship for the submillisecond intermediates of protein folding. J Mol Biol 357:997–1008CrossRefGoogle Scholar
  56. Wu Y, Kondrashkina E, Kayatekin C, Matthews CR, Bilsel O (2008) Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. In: Proceedings of the national academy of sciences of the United States of America, vol 105, pp 13367–13372Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Biophysics and Nanosystems ResearchAustrian Academy of SciencesGrazAustria

Personalised recommendations