Rendiconti Lincei

, Volume 22, Issue 2, pp 81–94 | Cite as

Radiolysis and radioracemization of 20 amino acids from the beginning of the Solar System

  • Franco Cataldo
  • Ornella Ursini
  • Giancarlo Angelini
  • Susana Iglesias-Groth
  • Arturo Manchado


A series of chiral amino acids in the levo form used in the current terrestrial biochemistry were irradiated in the solid and dry state with γ-radiation to a dose of 3.2 MGy which is the dose equivalent to that derived by radionuclide decay in comets and asteroids in 1.05 × 109 years at a depth >20 m. For each amino acids, the radiolysis degree and the radioracemization degree was measured, respectively by differential scanning calorimetry (DSC) and by optical rotatory dispersion (ORD) spectroscopy. From these measurements, a radiolysis rate constant k dsc and a radioracemization rate constant k rac were determined for each amino acid and extrapolated to a dose of 14 MGy which corresponds to the expected total dose delivered by the natural radionuclides decay to all the organic molecules present in comets and asteroids in 4.6 × 109 years, the age of the Solar System. It is shown that all the amino acids studied survive a radiation dose of 3.2 MGy although part of them is lost in radiolytic processes. Similarly also the radioracemization process accompanying the radiolysis does not extinguish the initial enantiomeric enrichment. Even the extrapolation to 14 MGy corresponding to 4.6 × 109 years shows the partial survival of all amino acids studied and their enantiomeric enrichment. The knowledge of the radiolysis and radioracemization rate constants may permit the calculation of the original concentration of the amino acids at the times of the formation of the Solar System starting from the concentration found today in carbonaceous chondrites. Based on these results, it is not at all a surprise that amino acids have been found in meteorites and in measureable chiral excess. Furthermore, the amino acids showing the best level of radiolysis and radioracemization resistance are just those commonly found in enantiomeric enrichment in meteorites.


Astrochemistry Amino acids Radiolysis Racemization Optical activity Origin of life 


  1. Bonner WA, Blair NE, Lemmon RM (1979) The radioracemization of amino acids by ionizing radiation: geochemical and cosmochemical implications. Origins Life Evol Biosph 9:279–290CrossRefGoogle Scholar
  2. Cataldo F (2007a) Gamma radiolysis of chiral terpenes: α(+)pinene and α(-)pinene. J Radioanal Nucl Chem 272:82–90Google Scholar
  3. Cataldo F (2007b) Radiation-induced racemization and amplification of chirality: implications for comets and meteorites. Int J Astrobiol 6:1–10CrossRefGoogle Scholar
  4. Cataldo F, Strazzulla G, Iglesias-Groth S (2009) Stability of C60 and C70 fullerene toward corpuscular and gamma radiation. Mon Not R Astronom Soc 394:615–623CrossRefGoogle Scholar
  5. Cataldo F, Angelini G, Iglesias-Groth S, Manchado A (2010a) Solid state radiolysis of amino acids in an astrochemical perspective. Radiat Phys Chem 80:57–65CrossRefGoogle Scholar
  6. Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2010b) Solid state radiolysis of sulphur-containing amino acids: cysteine, cystine and methionine. J Radioanal Nucl Chem 287:573–580CrossRefGoogle Scholar
  7. Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2010c) A detailed analysis of the properties of radiolyzed proteinaceous amino acids. J Radioanal Nucl Chem (accepted for publication)Google Scholar
  8. Coen BA, Chyba CF (2000) Racemization of meteoric amino acids. Icarus 145:272–281CrossRefGoogle Scholar
  9. Cronin JR, Pizzarello S (2000) Chirality of meteoritic organic matter: a brief review. In: Goodfriend GA, Collins MJ, Fogel ML, Macko SA, Wehmiller JF (eds) Perspective in amino acid and protein geochemistry, Chap 2. Oxford University Press, OxfordGoogle Scholar
  10. Czechovski L, Leliwa-Kopystynski J (2003) Tidal heating and convection in the medium sized icy satellites. Celest Mech Dyn Astron 87:157–189CrossRefGoogle Scholar
  11. Djerassi C (1960) Optical rotatory dispersion applications to organic chemistry, Chap 15. McGraw-Hill, New YorkGoogle Scholar
  12. Draganic IG, Draganic ZD, Adloff JP (1993) Radiation and radioactivity on the earth and beyond. CRC Press, Boca RatonGoogle Scholar
  13. Iglesias-Groth S, Cataldo F, Ursini O, Manchado A (2011) Amino acids in comets and meteorites: stability under gamma radiation and preservation of the enantiomeric excess. Mon Not Roy Astronom Soc 410:1447–1453Google Scholar
  14. Izumi Y, Matsui T, Koketsu T, Nakagawa K (2008) Preservation of homochirality of aspartic acid films irradiated with 8.5 eV vacuum ultraviolet light. Radiat Phys Chem 77:1160–1163CrossRefGoogle Scholar
  15. Jirgensons B (1973) Optical activity of proteins and other macromolecules, Chap IV. Springer, BerlinGoogle Scholar
  16. Jorissen A, Cerf C (2002) Asymmetric photoreactions as the origin of the biomolecular homochirality: a critical review. Orig Life Evol Biosph 32:129–142CrossRefGoogle Scholar
  17. Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5CrossRefGoogle Scholar
  18. Kohman TP (1997) Aluminium-26 a radionuclide for all seasons. J Radioanal Nucl Chem 219:165–176CrossRefGoogle Scholar
  19. Kvenvolden KA, Glavin DP, Bada JL (2000) Chirality of meteoritic organic matter: a brief review. In: Goodfriend GA, Collins MJ, Fogel ML, Macko SA, Wehmiller JF (eds) Extraterrestrial amino acids in the Murchinson meteorite: re-evaluation after thirty years, Chap 1. Oxford University Press, OxfordGoogle Scholar
  20. Kwok S (2009) Organic matter in space: from star dust to the Solar System. Astrophys Space Sci 319:5–21CrossRefGoogle Scholar
  21. Meierhenrich UJ (2008) Amino acids and the asymmetry of life. Springer, BerlinGoogle Scholar
  22. Meierhenrich UJ, Nahon L, Alcaraz C, Bredehoft JH, Hoffmann SV, Barbier B, Brack A (2005) Asymmetric photolysis of the amino acid leucine in the solid state. Angew Chem Int Ed 44:2–5CrossRefGoogle Scholar
  23. Merk R, Prialnik D (2003) Early thermal and structural evolution of small bodies in the trans-neptunian zone. Earth Moon Planets 92:374–395CrossRefGoogle Scholar
  24. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529CrossRefGoogle Scholar
  25. Miller SL (1955) Production of some organic compounds under primitive earth conditions. J Am Chem Soc 77:2351–2361CrossRefGoogle Scholar
  26. Miller SL (2000) The endogenous synthesis of organic compounds. In: Brack A (ed) The molecular origin of life: assembling the pieces of a puzzle, Chap 3. Cambridge University Press, CambridgeGoogle Scholar
  27. Miller SL, Orò J (1981) Harold C. Urey 1893–1981. J Mol Evol 17:263–264CrossRefGoogle Scholar
  28. Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338CrossRefGoogle Scholar
  29. Pizzarello S, Huang Y, Alexandre MR (2008) Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. Proc Natl Acad Sci 105:3700–3704CrossRefGoogle Scholar
  30. Prialnik D (2002) Modeling the comet nucleus interior. Earth Moon Planets 89:27–52CrossRefGoogle Scholar
  31. Prialnik D, Bar-Nun A (1990) Heating and melting of small icy satellites by the decay of Al26. Astrophys J 355:281–286CrossRefGoogle Scholar
  32. Prialnik D, Bar-Nun A, Podolak M (1987) Radiogenic heating of comets by Al26 and implications for their time of formation. Astrophys J 319:993–1002CrossRefGoogle Scholar
  33. Prialnik D, Sarid G, Rosenberg ED, Merk R (2008) Thermal and chemical evolution of comet nuclei and Kuiper belt objects. Space Sci Rev 138:147–164CrossRefGoogle Scholar
  34. Sagan C, Khare BN (1971) Long wavelength ultraviolet photoproduction of amino acids on the primitive earth. Science 173:417–420CrossRefGoogle Scholar
  35. Sagstuen E, Sanderud A, Hole EO (2004) The solid-state radiation chemistry of simple amino acids (revisited). Radiat Res 162:112–119CrossRefGoogle Scholar
  36. Sephton MA (2002) Organic compounds in carbonaceous meteorites. Nat Prod Rep 19:292–311CrossRefGoogle Scholar
  37. Taguchi M, Hayano K, Xu Y, Moriyama M, Kobayashi Y, Hiratsuka H, Ohno SI (2001) Yields of tyrosines in the radiolysis of aqueous phenylalanine solutions by energetic heavy ions. Radiat Phys Chem 60:263–268CrossRefGoogle Scholar
  38. Unsold A, Baschek B (2002) The new cosmos: an introduction to astronomy and astrophysics. Springer, BerlinGoogle Scholar
  39. Urey HC (1952) On the early chemical history of the earth and the origin of life. Proc Natl Acad Sci USA 38:351–363CrossRefGoogle Scholar
  40. Urey HC (1955) The cosmic abundances of potassium, uranium and thorium and the heat balance of the earth the moon and mars. Proc Natl Acad Sci USA 41:127–144CrossRefGoogle Scholar
  41. Urey HC (1956) The cosmic abundances of potassium, uranium and thorium and the heat balance of the earth, the moon and mars. Proc Natl Acad Sci USA 42:889–891CrossRefGoogle Scholar
  42. Yabushita S (1993) Thermal evolution of cometary nuclei by radioactive heating and possible formation of organic chemicals. Mon Not R Astronom Soc 260:819–825Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Franco Cataldo
    • 1
    • 2
  • Ornella Ursini
    • 3
  • Giancarlo Angelini
    • 3
  • Susana Iglesias-Groth
    • 4
  • Arturo Manchado
    • 4
    • 5
  1. 1.Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di CataniaCataniaItaly
  2. 2.Lupi Chemical ResearchRomeItaly
  3. 3.Istituto di Metodologie Chimiche, CNRRomeItaly
  4. 4.Instituto de Astrofísica de Canarias (IAC)La Laguna, TenerifeSpain
  5. 5.CSICMadridSpain

Personalised recommendations