Skip to main content
Log in

On the geodynamics of the northern Adriatic plate

  • Published:
RENDICONTI LINCEI Aims and scope Submit manuscript

Abstract

The northern Adriatic plate underwent Permian-Mesozoic rifting and was later shortened by three orogenic belts (i.e., Apennines, Alps and Dinarides) developed along three independent subduction zones. The inherited Mesozoic horst and graben grain determined structural undulations of the three thrust belts. Salients developed in grabens or more shaly basins, whereas recesses formed regularly around horsts. A new interpretation of seismic reflection profiles, subsidence rates from stratigraphic analysis, and GPS data prove that the three orogens surrounding the northern Adriatic plate are still active. The NE-ward migration of the Apennines subduction hinge determines the present-day faster subsidence rate in the western side of the northern Adriatic (>1 mm/year). This is recorded also by the SW-ward dip of the foreland regional monocline, and the SW-ward increase of the depth of the Tyrrhenian sedimentary layer, as well as the increase in thickness of the Pliocene and Pleistocene sediments. These data indicate the dominant influence of the Apennines subduction, which controls the asymmetric subsidence in the northern Adriatic realm. The Dinarides front has been tilted by the Apennines subduction hinge, as shown by the eroded Dalmatian anticlines subsiding in the eastern Adriatic Sea. GPS data suggest that southward tilting of the western and central Southern Alps, whereas the eastern Southern Alps are uplifting. The obtained strain rates are on average within 20 nstrain/year. The horizontal shortening obtained from GPS velocities at the front of the three belts surrounding the northern Adriatic plate are about 2–3 mm/year (Northern Apennines), 1–2 mm/year (Southern Alps), and <1 mm/year (Dinarides). The shortening directions tend to be perpendicular to the thrust belt fronts. The areas where the strain rate sharply decreases along a tectonic feature (e.g., the Ferrara salient, the Venetian foothills front) are proposed to be occupied by locked structures where stress is accumulating in the brittle layer and thus seismically prone. Finally, we speculate that, since the effects of three independent subduction zones coexist and overlap in the same area, plate boundaries are passive features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Allmendinger RW, Reilinger R, Loveless J (2007) Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 26. doi:10.1029/2006TC002030

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112. doi:10.1029/2007JB004949

  • Antonioli F, Ferranti L, Fontana A, Amorosi AM, Bondesan A, Braitenberg C, Dutton A, Fontolan G, Furlani S, Lambeck K, Mastronuzzi G, Monaco C, Spada G, Stocchi P (2009) Holocene relative sea-level changes and vertical movements along the Italian coastline. J Quat Int 231:37–51

    Google Scholar 

  • Argand E (1924) La tectonique de l’Asie. In: Proc Int Geol Congr, vol XIII, pp 171–372

  • Argnani A, Artoni A, Ori G, Roveri M (1991) L’avanfossa centro-adriatica: stili strutturali e sedimentazione. Studi Geol Camerti 1991/1:371–381

    Google Scholar 

  • Baldi P, Casula C, Cenni N, Loddo F, Pesci A (2009) GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet Sci Lett 288:204–212

    Article  CAS  Google Scholar 

  • Basili R, Valensise G, Vannoli P, Burrato P, Fracassi U, Mariano S, Tiberti M, Boschi E (2008) The database of individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43

    Article  Google Scholar 

  • Benedetti LC, Tapponnier P, Gaudemer Y, Manighetti I, Van der Woerd J (2003) Geomorphic evidence for an emergent active thrust along the edge of the Po Plain: the Broni-Stradella fault. J Geophys Res 108(B5):2238. doi:10.1029/2001JB001546

    Google Scholar 

  • Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the Southalpine upper crust from the Triassic to the Early Cretaceous. Sediment Geol 86(1-2):53–76

    Google Scholar 

  • Bertotti G, ter Voorde M, Cloetingh S, Picotti V (1997) Thermo-mechanical evolution of the South Alpine rifted margin (North Italy): constraints on the strength of passive continental margins. Earth Planet Sci Lett 146:181–193

    Article  CAS  Google Scholar 

  • Bertotti G, Picotti V, Cloetingh S (1998) Lithospheric weakening during “retro-foreland” basin formation: tectonic evolution of the central South Alpine foredeep. Tectonics 17(1):131–142

    Article  Google Scholar 

  • Beutler et al (2007) In: Dach R, Hugentobler U, Fridez P, Meindl M (eds) Bernese GPS software. Astronomical Institute, University of Bern

  • Bigi G, Castellarin A, Coli M, Dal Piaz GV, Sartori M, Scandone P, Vai GB (1990) Structural model of Italy. sELCA, Florence

    Google Scholar 

  • Boyer SE (1995) Sedimentary basin taper as a factor controlling the geometry and advance of thrust belt. Am J Sci 295:1220–1254

    Article  Google Scholar 

  • Bressan G, Snidarcig A, Venturini C (1998) Present state of tectonic stress of the Friuli area (eastem Southern Alps). Tectonophysics 292:211–227

    Article  Google Scholar 

  • Cardozo N, Allmendinger RW (2009) SSPX: A program to compute strain from displacement/velocity data. Comput Geosci 35:1343–1357

    Article  Google Scholar 

  • Carminati E, Martinelli G (2002) Subsidence rates in the Po plain (Northern Italy): the relative impact of Natural and Anthropic causation. Eng Geol 66:241–255

    Article  Google Scholar 

  • Carminati E, Doglioni C, Scrocca D (2003) Apennines subduction-related subsidence of Venice. Geophys Res Lett 30. doi:10.1029/2003GL017001

  • Carminati E, Doglioni C, Scrocca D (2005) Magnitude and causes of long-term subsidence of the Po Plain and Venetian region. In: Fletcher CA, Spencer T, Mosto JD, Campostrini P (eds) Flooding and environmental challenges for venice and its lagoon: state of knowledge. Cambridge University Press

  • Carminati E, Cavazza D, Scrocca D, Fantoni R, Scotti P, Doglioni C (2010a) Thermal and tectonic evolution of the Southern Alps (Northern Italy) rifting: coupled organic matter maturity analysis and thermo-kinematic modelling. AAPG Bull 94(3):369–397. doi:10.1306/08240909069

    Article  Google Scholar 

  • Carminati E, Scrocca D, Doglioni C (2010b) Compaction-induced stress variations with depth in an active anticline: Northern Apennines, Italy. J Geophys Res 115:B02401. doi:10.1029/2009JB006395

    Article  Google Scholar 

  • Casero P, Rigamonti A, Iocca M (1990) Paleogeographic relationships durino cretaceous between the northern Adriatic area and the eastern Southern Alps. Mem Soc Geol It 45:807–814

    Google Scholar 

  • Castellarin A, Cantelli L, Fesce AM, Mercier J, Picotti V, Pini GA, Prosser G, Selli L (1992) Alpine compressional tectonics in the Southern Alps. Relationships with the N-Apennines. Ann Tectonicae VI(1):62–94

    Google Scholar 

  • Castellarin A, Nicolich R, Fantoni R, Cantelli L, Sella M, Selli L (2006) Structure of the lithosphere beneath the Eastern Alps (southern sector of the TRANSALP transect). Tectonophysics 414:259–282

    Article  Google Scholar 

  • Castello B, Selvaggi G, Chiarabba C, Amato A (2006) CSI Catalogo della sismicita italiana 1981–2002, version 1.1, INGV–CNT, Rome. http://csi.rm.ingv.it/

  • Catalano R, Doglioni C, Merlini S (2001) On the Mesozoic Ionian basin. Geophys J Int 144:49–64

    Article  Google Scholar 

  • Consiglio Nazionale delle Ricerche (1992) Structural model of Italy and gravity map, progetto Finalizzato Geodinamica. Quaderni de “La Ricerca Scientifica”, 114, vol 3

  • D’Agostino N, Cheloni D, Mantenuto S, Selvaggi G, Michelini A, Zuliani D (2005) Interseismic strain accumulation in the eastern Southern Alps (NE Italy) and deformation at the eastern boundary of the Adria block observed by CGPS measurements. Geophys Res Lett 32. doi:10.1029/2006GL024266

  • Dahlen FA (1990) Critical taper model of fold and thrust belts and accretionary wedge. Earth Planet Sci Lett 19:55–99

    Google Scholar 

  • Dal Piaz GV, Bistacchi A, Massironi M (2003) Geological outline of the Alps. Episodes 26:175–180

    Google Scholar 

  • Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet Sci Lett 273:163–174

    Article  CAS  Google Scholar 

  • Di Bucci D, Mazzoli S (2002) Active tectonics of the Northern Apennines and Adria geodynamics: new data and a discussion. J Geodyn 34:687–707

    Article  Google Scholar 

  • Di Stefano R, Kissling E, Chiarabba C, Amato A, Giardini D (2009) Shallow subduction beneath Italy: Three-dimensional images of the Adriatic–European–Tyrrhenian lithosphere system based on high-quality P wave arrival times. J Geophys Res 114. doi:10.1029/2008JB005641

  • Doglioni C (1987) Tectonics of the Dolomites (Southern Alps, Northern Italy). J Struct Geol 9:181–193

    Article  Google Scholar 

  • Doglioni C (1992a) Relationships between Mesozoic extensional tectonics, stratigraphy and Alpine inversion in the Southern Alps. Eclog Geol Helv 85:105–126

    Google Scholar 

  • Doglioni C (1992b) The Venetian Alps thrust belt. In: McClay K (ed) Thrust tectonics. Chapman amd Hall, pp 319–324

  • Doglioni C, Carminati E (2002) The effects of four subductions in NE Italy. Transalp conference. Mem Sci Geol 54:1–4

    Google Scholar 

  • Doglioni C, Carminati E (2008) Structural styles and dolomites field trip. Mem Descrittive Carta Geol d’Italia 92:1–299

    Google Scholar 

  • Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo A, Piromallo C (1999) Orogens and slabs vs. their direction of subduction. Earth Sci Rev 45:167–208

    Article  Google Scholar 

  • Doglioni C, Carminati E, Cuffaro M, Scrocca D (2007) Subduction kinematics and dynamic constraints. Earth Sci Rev 83:125–175

    Article  Google Scholar 

  • Galadini F, Poli ME, Zanferrari A (2005) Seismogenic sources potentially responsible for earthquakes with M > 6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy). Geophys J Int 160:1–24

    Google Scholar 

  • Genser J, Neubauer F (1989) Low angle normal faults at the eastern margin of the Tauern window (Eastern Alps). Mitt Oesterr Geol Ges 81:233–243

    Google Scholar 

  • DISS Working Group (2009) Database of individual seismogenic sources (diss), version 3.1.0: a compilation of potential sources for earthquakes larger than m 5.5 in italy and surrounding areas. ©INGV 2009—Istituto Nazionale di Geofisica e Vulcanologia—All rights reserved. http://diss.rm.ingv.it/diss/

  • Heflin et al (2009) GPS time series. Jet Propulsion Laboratory, California Institute of Technology. http://sideshow.jpl.nasa.gov/mbh/series.html

  • Kissling E (1993) Deep structure of the Alps; what do we really know? Phys Earth Planet Int 79:87–112

    Article  Google Scholar 

  • Kummerow J, Kind R, Onken O, Giese P, Ryberg T, Wylegalla K, Scherbaum F, TRANSALP Working Group (2004) A natural and controlled source seismic profile through the Eastern Alps: TRANSALP. Earth Planet Sci Lett 225:115–129

    Article  CAS  Google Scholar 

  • Mariotti G, Doglioni C (2000) The dip of the foreland monocline in the Alps and Apennines. Earth Planet Sci Lett 181:191–202

    Article  CAS  Google Scholar 

  • Merlini S, Doglioni C, Fantoni R, Ponton M (2002) Analisi strutturale lungo un profilo geologico tra la linea Fella–Sava e l’avampaese adriatico (Friuli Venezia Giulia—Italia). Mem Soc Geol It 57:293–300

    Google Scholar 

  • Montone P, Mariucci MT, Pondrelli S, Amato A (2004) An improved stress map for Italy and surrounding regions (central Mediterranean). J Geophys Res 109. doi:10.1029/2003JB002703

  • Ori G, Roveri M, Vannoni F (1986) Plio-Pleistocene sedimentation in the Apenninic–Adriatic foredeep (Central Adriatic Sea, Italy). Spec Publ Int Ass Sediment 8:183–198

    Google Scholar 

  • Panza GF, Raykova RB (2008) Structure and rheology of lithosphere in Italy and surrounding. Terra Nova 20:194–199

    Article  Google Scholar 

  • Panza GF, Mueller S, Calcagnile G, Knopoff L (1982) Delineation of the north central Italian upper mantle anomaly. Nature 296:238–239

    Article  Google Scholar 

  • Panza GF, Pontevivo A, Chimera G, Raykova R, Aoudia A (2003) The lithosphere–asthenosphere: Italy and surroundings. Episodes 26:169–174

    Google Scholar 

  • Panza GF, Peccerillo A, Aoudia A, Farina B (2007) Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic settings: the Tyrrhenian Sea and surroundings. Earth Sci Rev 80:1–46

    Article  Google Scholar 

  • Pfiffner OA, Lehener P, Heizmann P, Mueller S, Steck A (1997) Results of NRP20-Deep structure of the Alps. Birkhäuser Verlag, Basel

    Google Scholar 

  • Picotti V, Pazzaglia FJ (2008) A new active tectonic model for the construction of the Northern Apennines mountain front near Bologna (Italy). J Geophys Res 113:B08412. doi:10.1029/2007JB005307

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Neubauer F, Schmid SM, Neugebauer J (1989) Extension in compressional orogenic belts: the Eastern Alps. Geology 17:404–407

    Article  Google Scholar 

  • Riguzzi F, Pietrantonio G, Devoti R, Atzori S, Anzidei M (2009) Volcanic unrest of the Colli Albani (central Italy) detected by GPS monitoring test. Phys Earth Planet Int 177:79–87

    Article  Google Scholar 

  • Royden L (1993) The tectonic expression slab pull at continental convergent boundaries. Tectonics 12:303–325

    Article  Google Scholar 

  • Schonborn G (1999) Balancing cross sections with kinematic constraints: the Dolomites (northern Italy). Tectonics 18:527–545

    Article  Google Scholar 

  • Scrocca D (2006) Thrust front segmentation induced by differential slab retreat in the Apennines (Italy). Terra Nova 18:154–161

    Article  Google Scholar 

  • Scrocca D, Carminati E, Doglioni C, Marcantoni D (2007) Slab retreat and active shortening along the Central-Northern Apennines. In: Lacombe O, Lavй J, Roure F, Verges J (eds) Thrust belts and Foreland Basins: from fold kinematics to hydrocarbon systems. Frontier in Earth Sciences, Springer, pp 471–487

    Google Scholar 

  • Selverstone J (2005) Are the Alps collapsing? Annu Rev Earth Planet Sci 33:113–132. doi:10.1146/annurev.earth.33.092203.122535

    Article  CAS  Google Scholar 

  • Shen ZK, Jackson DD, Ge BX (1996) Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J Geophys Res 101:27957–27980

    Article  Google Scholar 

  • Slejko D, Neri G, Orozova I, Renner G, Wyss M (1999) Stress field in Friuli (NE Italy) from fault plane solutions of activity following the 1976 main shock. Bull Seismol Soc Am 89:4

    Google Scholar 

  • Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55:293–305

    Article  Google Scholar 

  • Vai GB (1979) Tracing the Hercynian structural zones across “Neo-Europa”: an introduction. Mem Soc Geol It 20:39–45

    Google Scholar 

  • Vannoli P, Basili R, Valensise G (2004) New geomorphic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy). J Seism 8:297–312

    Article  Google Scholar 

  • VIDEPI (2009) Visibilita dei dati afferenti all’attivita di esplorazione petrolifera in Italia. http://www.videpi.com

  • Wegmann KW, Pazzaglia FJ (2009) Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: climatic, lithologic, and tectonic controls on terrace genesis in an active orogen. Quat Sci Rev 28(2009):137–165

    Article  Google Scholar 

  • Wessel P, Smith WHF (1995) New version of Generic Mapping Tools (GMT) version 3.0 released. Eos Trans AGU 76:329

    Google Scholar 

  • Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76:483–494

    Article  Google Scholar 

  • Wilson LF, Pazzaglia FJ, Anastasio DJ (2009) A fluvial record of active fault-propagation folding, Salsomaggiore anticline, northern Apennines, Italy. J Geophys Res 114:B08403. doi:10.1029/2008JB005984

    Article  Google Scholar 

  • Winterer L, Bosellini A (1981) Subsidence and sedimentation on Jurassic passive continental margin, southern Alps Italy. AAPG Bull 65:394–421

    Google Scholar 

Download references

Acknowledgments

Thanks to the two constructive reviewers and Giorgio Vittorio Dal Piaz who provided helpful suggestions. We are also grateful to the Seismic Micro-Technology, Inc. for making available the Kingdom software. Research supported by TopoEurope, Topo-4D project, CNR. Some of the figures were made with the Generic Mapping Tools of Wessel and Smith (1995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cuffaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuffaro, M., Riguzzi, F., Scrocca, D. et al. On the geodynamics of the northern Adriatic plate. Rend. Fis. Acc. Lincei 21 (Suppl 1), 253–279 (2010). https://doi.org/10.1007/s12210-010-0098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-010-0098-9

Keywords

Navigation