, Volume 21, Supplement 1, pp 115–129 | Cite as

Ground surface dynamics in the northern Adriatic coastland over the last two decades

  • Luigi Tosi
  • Pietro Teatini
  • Tazio Strozzi
  • Laura Carbognin
  • Giuliano Brancolini
  • Federica Rizzetto


During most of the past century, spirit leveling was the only technique for providing high-precision data for the assessment of land subsidence in the northern Adriatic coastland. Only at the end of the 1990s did global positioning system methods, both continuous (CGPS) and differential (DGPS), begin to be used for ground movement measurements with a sufficient accuracy. Since the beginning of the new millennium, space-borne observation techniques based on synthetic aperture radar (SAR) interferometry also have been used to detect ground displacements, i.e., subsidence and uplift, in the Venice coastland. Differential InSAR (DInSAR), first, and interferometric point target analysis (IPTA), at a later stage, have been applied to measure and map displacements occurring since 1992 when SAR data first became available. The capability of SAR interferometry to measure ground vertical movements in large areas at millimetric accuracy has significantly improved the knowledge of the phenomenon. In particular, comprehensive maps of the vertical displacements have revealed the high spatial variability characterizing the ground movements in the Venice region. A general land stability has been detected in the central part of the study area, including the major cities of Venice, Padova and Treviso, with scattered local bowls of subsidence of up to 2–3 mm/year. Conversely, land settlement has appeared as a widespread phenomenon in the northern and southern coast with rates of up to 5 and 15 mm/year, respectively. Uplift rates ranging up to 2 mm/year have been measured in two different large areas located north of Treviso and south of Padova, respectively, whereas higher values are restricted to the eastern sector of the Euganean Hills.


Land subsidence Deep and shallow components Natural and anthropogenic factors Intraplate processes Spatial variability 



This work was developed in the framework of the Northern Adriatic Coastland Land Subsidence Research Programme (ISMAR-CNR, DMMMSA-University of Padova, and Gamma Remote Sensing Working Group). ERS and ENVISAT data have been elaborated within the INLET Project supported by Magistrato alle Acque (Venice Water Authority) through its concessionary Consorzio Venezia Nuova. CGPS records at Treviso (TREV) courtesy Magistrato alle Acque, TerraSAR-X data courtesy LAN0242, ©DLR. We gratefully acknowledge Devin Galloway (USGS) and an anonymous reviewer for their constructive criticisms and comments.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112:B09401. doi: 10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Amorosi A, Dinelli E, Rossi V, Vaiani SC, Sacchetto M (2008) Late Quaternary palaeoenvironmental evolution of the Adriatic coastal plain and the onset of Po River Delta. Palaeogeogr Palaeoclimatol Palaeoecol 268(1–2):80–90CrossRefGoogle Scholar
  3. Bertotti G, Picotti V, Chilovi C, Fantoni R, Merlini S, Mosconi A (2001) Neogene to Quaternary sedimentary basins in the South Adriatic (Central Mediterranean): foredeep and lithospheric buckling. Tectonics 20(5):771–787CrossRefGoogle Scholar
  4. Brambati A, Carbognin L, Quaia T, Teatini P, Tosi L (2003) The Lagoon of Venice: geological setting, evolution and land subsidence. Episodes 26(3):264–268Google Scholar
  5. Caputo M, Pieri L, Unguendoli M (1970) Geometric investigation of the subsidence in the Po Delta. Bollettino di Geofisica Teorica e Applicata 47:187–207Google Scholar
  6. Carbognin L, Tosi L (2002) Interaction between climate changes, eustacy and land subsidence in the North Adriatic Region, Italy. Mar Ecol 23(1):38–50CrossRefGoogle Scholar
  7. Carbognin L, Gatto P, Mozzi G, Gambolati G, Ricceri G (1977) New trend in the subsidence of Venice. In: Land subsidence. IAHS Publ. no. 121, Wallingford, pp 65–81Google Scholar
  8. Carbognin L, Gatto P, Mozzi G, Gambolati G (1978) Land subsidence of Ravenna and its similarities with the Venice case. In: Saxena SK (ed) Evaluation and prediction of subsidence. Proc. Int. Conf. on Ev. and Pred. of Sub. ASCE, New York, pp 254–266Google Scholar
  9. Carbognin L, Frankenfield Zanin J, Marabini F (2000) River delta region, Italy. An overview of environmental evolution and land subsidence. CNR (ed) La Garagola, 42 ppGoogle Scholar
  10. Carbognin L, Teatini P, Tosi L (2004) Relative land subsidence in the lagoon of Venice, Italy, at the beginning of the new millennium. J Mar Syst 51:345–353. doi: 10.1016/j.jmarsys.2004.05.021 CrossRefGoogle Scholar
  11. Carbognin L, Gambolati G, Putti M, Rizzetto F, Teatini P, Tosi L (2006) Soil contamination and land subsidence raise concern in the Venice watershed, Italy. In: Brebbia CA, Conti M, Tiezzi E (eds) Management of natural resources, sustainable development and ecological hazards. WIT transactions on ecology and the environment, vol 99. WIT Press, Southampton, UK, pp 691–700, doi: 10.2495/RAV060671
  12. Carbognin L, Teatini P, Tomasin A, Tosi L (2009a) Global change and relative sea level rise at Venice: what impact in term of flooding. Clim Dyn. doi: 10.1007/s00382-009-0617-5
  13. Carbognin L, Teatini P, Tosi L (2009b) The impact of relative sea level rise on the Northern Adriatic Sea coast, Italy. In: Brebbia CA, Conti M, Tiezzi E (eds) Management of natural resources, sustainable development and ecological hazards II. WIT transactions on ecology and the environment, vol 127, pp 137–148Google Scholar
  14. Carminati E, Doglioni C, Scrocca D (2003) Apennines subduction-related subsidence of Venice (Italy). Geophys Res Lett 30(13):1717CrossRefGoogle Scholar
  15. Crosetto M, Monserrat O, Bremmer C, Hanssen R, Capes R, Marsh S (2008) Ground motion monitoring using SAR interferometry: quality assessment. Eur Geol 26:12–15Google Scholar
  16. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20CrossRefGoogle Scholar
  17. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94:9183–9191CrossRefGoogle Scholar
  18. Gambardella F, Mercusa G (1984) Land subsidence in the delta area river Po: damages and repairing works. In: IAHS Publication, no. 151, pp 309–320Google Scholar
  19. Gambolati G (1998) CENAS-coastline evolution of the upper Adriatic sea due to sea level rise and natural and anthropogenic land subsidence. Kluwer, Dordrecht, 344 ppGoogle Scholar
  20. Gambolati G, Teatini P (1998) Numerical analysis of land subsidence due to natural compaction of the Upper Adriatic Sea basin. In: Gambolati G (ed) CENAS, Coastline evolution of the upper adriatic sea due to sea level rise and natural and anthropogenic land subsidence. Kluwer Academic Publ., Water Science and Technology Library N. 28, pp 103–132Google Scholar
  21. Gambolati G, Teatini P, Tomasi L, Gonella M (1999) Coastline regression of the Romagna Region, Italy, due to natural and anthropogenic land subsidence and sea level rise. Water Resour Res 35:163–184CrossRefGoogle Scholar
  22. Gambolati G, Putti M, Teatini P, Camporese M, Ferraris S, Gasparetto-Stori G, Nicoletti V, Rizzetto F, Silvestri S, Tosi L (2005) Peatland oxidation enhances subsidence in the Venice watershed. EOS Trans AGU 86(23):217–224CrossRefGoogle Scholar
  23. Gatto P, Carbognin L (1981) The Lagoon of Venice: natural environmental trend and man-induced modification. Hydrol Sci Bull 26(4/12):379–391CrossRefGoogle Scholar
  24. Kent VD, Rio D, Massari F, Kukla G, Lanci L (2002) Emergence of Venice during the Pleistocene. Quat Sci Rev 21:1719–1727CrossRefGoogle Scholar
  25. Kruse S, Royden L (1994) Bending and unbending of an elastic lithosphere: the Cenozoic history of the Apennine and Dinaride foredeeps basins. Tectonics 13(2):278–302CrossRefGoogle Scholar
  26. Massari F, Rio D, Serandrei Barbero R, Asioli A, Capraro L, Fornaciari E, Müllenders W, Raffi I, Vergerio PP (2004) The environment of Venice area in the past two million years. Palaeogeogr Palaeoclimatol Palaeoecol 202(3–4):273–308CrossRefGoogle Scholar
  27. Puppo A (1957) L’affondamento del Delta Padano: primi lineamenti di una cinematica del fenomeno. Metano, Petrolio e Nuove Energie XI(10):567–575Google Scholar
  28. Rizzetto F, Tosi L, Zecchin M, Brancolini G, Baradello L, Tang C (2009) Ancient geomorphological features in shallows of the Venice Lagoon (Italy). J Coast Res 56:752–756Google Scholar
  29. Strozzi T, Teatini P, Tosi L (2009) TerraSAR-X reveals the impact of the mobile barrier works on the Venice coastal stability. Remote Sens Environ 113:2682–2688CrossRefGoogle Scholar
  30. Teatini P, Tosi L, Strozzi T, Carbognin L, Wegmüller U, Rizzetto F (2005) Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens Environ 98:403–413. doi: 10.1016/j.rse.2005.08.002 CrossRefGoogle Scholar
  31. Teatini P, Strozzi T, Tosi L, Wegmüller U, Werner C, Carbognin L (2007) Assessing short- and long-time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. J Geophys Res 112:F01012. doi: 10.1029/2006JF000656 CrossRefGoogle Scholar
  32. Teatini P, Tosi L, Strozzi T, Carbognin L, Cecconi G, Rosselli R, Libardo S (2009) Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry. Phys Chem Earth. doi: 10.1016/j.pce.2010.01.002
  33. Tosi L, Carbognin L, Teatini P, Rosselli R, Gasparetto Stori G (2000) The ISES Project subsidence monitoring of the catchment basin south of the Venice Lagoon (Italy). In: Carbognin L, Gambolati G, Johnson A (eds) Land subsidence, vol II. La Garangola, Padova, pp 113–126Google Scholar
  34. Tosi L, Carbognin L, Teatini P, Strozzi T, Wegmüller U (2002) Evidences of the present relative land stability of Venice, Italy, from land, sea, and space observations. Geophys Res Lett 29(12):1562. doi: 10.1029/2001GL013211 CrossRefGoogle Scholar
  35. Tosi L, Teatini P, Carbognin L, Frankenfield J (2007a) A new project to monitor land subsidence in the northern Venice coastland (Italy). Env Geol 52(5):889–898. doi: 10.1007/s00254-006-0530-8 CrossRefGoogle Scholar
  36. Tosi L, Rizzetto F, Bonardi M, Donnici S, Serandrei Barbero R, Toffoletto F (2007b) Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, Foglio 128 “Venezia”. APAT, Dip. Difesa del Suolo, Servizio Geologico d’Italia, SystemCart, Roma, 164 pp., 2 mapsGoogle Scholar
  37. Tosi L, Rizzetto F, Bonardi M, Donnici S, Serandrei Barbero R, Toffoletto F (2007c) Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, Foglio 148–149 “Chioggia-Malamocco”. APAT, Dip. Difesa del Suolo, Servizio Geologico d’Italia, SystemCart, Roma, 164 pp., 2 mapsGoogle Scholar
  38. Tosi L, Teatini P, Carbognin L, Brancolini G (2009a) Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: the Venice coast, Italy. Tectonophysics 474(1–2):271–284. doi: 10.1016/j.tecto.2009.02.026 CrossRefGoogle Scholar
  39. Tosi L, Rizzetto F, Zecchin M, Brancolini G, Baradello L (2009b) Morphostratigraphic framework of the Venice Lagoon (Italy) by very shallow water VHRS surveys: Evidence of radical changes triggered by human-induced river diversion. Geophys Res Lett 36:L09406. doi: 10.1029/2008GL037136 CrossRefGoogle Scholar
  40. Usai S, Klees R (1999) SAR interferometry on a very long time scale: a study of the interferometric characteristics of man-made features. IEEE Trans Geosci Remote Sens 37(4):2118–2123CrossRefGoogle Scholar
  41. Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric Point Target Analysis for deformation mapping. In: “IGARSS 2003”. Inst. of Electr. and Electron. Eng., New YorkGoogle Scholar
  42. Zecchin M, Baradello L, Brancolini G, Donda F, Rizzetto F, Tosi L (2008) Sequence stratigraphy based on high resolution seismic profiles in the late Pleistocene and Holocene deposits of the Venice area. Mar Geol 253:185–198. doi: 10.1016/j.margeo.2008.05.010 CrossRefGoogle Scholar
  43. Zecchin M, Brancolini G, Tosi L, Rizzetto F, Caffau M, Baradello L (2009) Anatomy of the Holocene succession of the southern Venice Lagoon revealed by very high resolution seismic data. Cont Shelf Res 29(10):1343–1359. doi: 10.1016/j.csr.2009.03.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Luigi Tosi
    • 1
  • Pietro Teatini
    • 1
    • 2
  • Tazio Strozzi
    • 3
  • Laura Carbognin
    • 1
  • Giuliano Brancolini
    • 1
  • Federica Rizzetto
    • 1
  1. 1.Institute of Marine Sciences, National Research CouncilVeniceItaly
  2. 2.Department of Mathematical Methods and Models for Scientific ApplicationsUniversity of PadovaPaduaItaly
  3. 3.Gamma Remote SensingGümligenSwitzerland

Personalised recommendations