Advertisement

Transactions of Tianjin University

, Volume 25, Issue 1, pp 38–44 | Cite as

Isolation of Secondary Metabolites with Antimicrobial Activities from Bacillus amyloliquefaciens LWYZ003

  • Zhen Liu
  • Yiting Wang
  • Xiaoqiang Jia
  • Wenyu LuEmail author
Research Article
  • 139 Downloads

Abstract

The strain LWYZ003, which can restrain multiple pathogens, was screened from the sediment of the ocean and identified as Bacillus amyloliquefaciens. Large-scale fermentation and modern chromatographic separation technologies (macroporous resin column chromatography, silica gel column chromatography, thin-layer chromatography and high-performance liquid chromatography) were used to separate antimicrobial products from the fermentation broth of marine-derived Bacillus amyloliquefaciens LWYZ003. Bioactive-guided separation was used in the term of seeking antimicrobial products from the secondary metabolites of Bacillus amyloliquefaciens LWYZ003. As a result, two natural products cycloheximide (1) and trehalose (2) were obtained. Their structures were elucidated by Fourier transform infrared spectroscopy, high-resolution mass spectrometry, 1H and 13C nuclear magnetic resonance analysis. In the cylinder plate method, compound 1 exhibited stronger antimicrobial activities than compound 2 against Micrococcus luteus, and also exhibited wider antimicrobial spectrum than compound 2. In conclusion, isolation of bioactive secondary metabolites from marine Bacillus sp. has enormous potentials in finding suitable antibiotics to inhibit multiple pathogens.

Keywords

Cycloheximide Trehalose Bacillus amyloliquefaciens Bioactivity-guided isolation Antibiotic 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China ("973" Program) (no. 2012CB721105) and the Major Research Plan of Tianjin, China (no. 16YFXTSF00460).

Supplementary material

12209_2018_137_MOESM1_ESM.doc (6.9 mb)
Supplementary material 1 (DOC 7020 kb)

References

  1. 1.
    Manivasagan P, Venkatesan J, Sivakumar K et al (2015) Marine actinobacterial metabolites and their pharmaceutical potential. Springer handbook of marine biotechnology. Springer, HeidelbergGoogle Scholar
  2. 2.
    Hamdache A, Lamarti A, Aleu J et al (2011) Non-peptide metabolites from the genus bacillus. Nat Prod 74(4):893–899CrossRefGoogle Scholar
  3. 3.
    Carlin F (2011) Origin of bacterial spores contaminating foods. Food Microbiol 28(2):177–182MathSciNetCrossRefGoogle Scholar
  4. 4.
    Han Y, Fan J, Zhou Z et al (2015) Cloning and efficient expression of bacillus sp. BH072 tasA gene in Escherichia coli. Trans Tianjin Univ 21(1):26–31CrossRefGoogle Scholar
  5. 5.
    Tan X, Han Y, Xiao H et al (2017) Pediococcus acidilactici, inhibit biofilm formation of food-borne pathogens on abiotic surfaces. Trans Tianjin Univ 23(1):70–77CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Liang YQ, Liu L et al (2017) Medium optimization for antifungal active substance production from Streptomyces lydicus using response surface methodology. Trans Tianjin Univ 23(1):78–86CrossRefGoogle Scholar
  7. 7.
    Lu C, Yin J, Zhang C et al (2017) Fed-batch fermentation for spinosad production in an improved reactor. Trans Tianjin Univ 23(1):1–8CrossRefGoogle Scholar
  8. 8.
    Tan X, Han Y, Xiao H et al (2017) Green fluorescent protein recombinant nisin as a probe for detection of gram-positive bacteria. Trans Tianjin Univ 23(4):1–6CrossRefGoogle Scholar
  9. 9.
    Feng Y, Fang Z, Wang H et al (2013) Synthesis and characterization of degraded gelatin grafted poly (ε-caprolactone) copolymers. Trans Tianjin Univ 19(3):182–187CrossRefGoogle Scholar
  10. 10.
    Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515–521CrossRefGoogle Scholar
  11. 11.
    Coton M, Denis C, Cadot P et al (2011) Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products. Food Microbiol 28(2):252–260CrossRefGoogle Scholar
  12. 12.
    Brownlee KA, Delves CS, Dorman M et al (1948) The biological assay of streptomycin by a modified cylinder plate method. J Gen Microbiol 2(1):40–53CrossRefGoogle Scholar
  13. 13.
    Perry NB, Blunt JW, Munro MHG (2011) Different solution and solid-state conformations of the antibiotic cycloheximide. Magn Reson Chem 27(7):624–627CrossRefGoogle Scholar
  14. 14.
    Garcia RC, Cruz-Sánchez S, Méndez R et al (1992) 1H and 13C NMR study of nonsymmetrical α, α -trehalose derivatives. Carbohyd Res 237:283–287CrossRefGoogle Scholar
  15. 15.
    Huang SX, Yu Z, Robert F et al (2011) Cycloheximide and congeners as inhibitors of eukaryotic protein synthesis from endophytic actinomycetes Streptomyces sps. YIM56132 and YIM56141. J Antibiot 64(1):163–166CrossRefGoogle Scholar
  16. 16.
    Choudhary SK, Walker RM, Powell DM et al (2006) CXCR4 tropic human immunodeficiency virus type 1 induces an apoptotic cascade in immature infected thymocytes that resembles thymocyte negative selection. Virology 352(2):268–284CrossRefGoogle Scholar
  17. 17.
    Crance JM, Biziagos E, Passagot J et al (1990) Inhibition of hepatitis A virus replication in vitro by antiviral compounds. J Med Virol 31(2):155–160CrossRefGoogle Scholar
  18. 18.
    Widholm JM (1985) Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol 78(2):430–432CrossRefGoogle Scholar
  19. 19.
    Crowe JH, Crowe LM, Jackson SA (1983) Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch Biochem Biophys 220(2):477–484CrossRefGoogle Scholar
  20. 20.
    Kurenda A, Pieczywek PM, Adamiak A et al (2013) Effect of cytochalasin B, latrunculin B, colchicine, cycloheximide, dimethyl sulfoxide and ion channel inhibitors on biospeckle activity in apple tissue. Food Biophys 8(4):290–296CrossRefGoogle Scholar
  21. 21.
    Alvarez F, Castro M, Príncipe A et al (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptidesiturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174CrossRefGoogle Scholar
  22. 22.
    Yin M, Yan Y, Lohman JR et al (2014) Cycloheximide and actiphenol production in Streptomyces sp. YIM56141 governed by single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. Org Lett 16(11):3072–3075CrossRefGoogle Scholar
  23. 23.
    Liu XM, Huang CY, Chen Q et al (2013) Study on the metabolic pathway of trehalose in pleurotus pulmonarius during heat stress recovery. Scientia Agricultura Sinica 46(24):5188–5195Google Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhen Liu
    • 1
    • 2
    • 3
  • Yiting Wang
    • 1
    • 2
    • 3
  • Xiaoqiang Jia
    • 1
    • 2
    • 3
  • Wenyu Lu
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Key Laboratory of System BioengineeringMinistry of EducationTianjinChina
  3. 3.SynBio Research PlatformCollaborative Innovation Center of Chemical Science and EngineeringTianjinChina

Personalised recommendations