Transactions of Tianjin University

, Volume 25, Issue 1, pp 9–22 | Cite as

Facile One-Pot Synthesis of ZSM-5 Aggregates with Inter- and Intra-Crystalline Mesopores for Methanol to Gasoline Conversion

  • Yaquan WangEmail author
  • Chunyang Fan
  • Hongyao Li
  • Xiao Wang
  • Fanjun Meng
  • Chao Sun
  • Liying Sun
Research Article


ZSM-5 aggregates consisting of superfine and hierarchical nanocrystals (combined with micropores and intra-crystalline mesopores) with an average size of 30 nm were prepared through one-pot synthesis with the assistance of anionic polyacrylamide (APAM). The resultant zeolites (AHN-ZSM-5) were characterized by XRD, ICP-OES, SEM, TEM, BET, NH3-TPD, Py-IR, and TG analyses and evaluated in the methanol to gasoline (MTG) reaction. Characterization results show that the hierarchical ZSM-5 aggregates possessed two kinds of mesopores, namely inter- and intra-crystalline mesopores. The amount of APAM considerably influenced the mesoporosity and textural properties of AHN-ZSM-5 zeolites. With the addition of APAM in the synthesis, the AHN-ZSM-5 zeolites exhibited large mesopore volume, large external surface area, and appropriate acidity. When applied in the MTG reaction, AHN-ZSM-5 demonstrated a catalytic lifetime that was 1.6 times longer than that of conventional ZSM-5 synthesized in the absence of APAM.


Hierarchical nanocrystal Intra-crystalline mesopore ZSM-5 aggregate Anionic polyacrylamide Methanol to gasoline 



This work was supported by the National Natural Science Foundation of China (No. 21276183).


  1. 1.
    Fattahi M, Behbahani RM, Hamoule T (2016) Synthesis promotion and product distribution for HZSM-5 and modified Zn/HZSM-5 catalysts for MTG process. Fuel 181:248–258CrossRefGoogle Scholar
  2. 2.
    Li JQ, Miao PJ, Li Z et al (2015) Hydrothermal synthesis of nanocrystalline H[Fe, Al]ZSM-5 zeolites for conversion of methanol to gasoline. Energy Convers Manage 93:259–266CrossRefGoogle Scholar
  3. 3.
    Gujar AC, Guda VK, Nolan M et al (2009) Reactions of methanol and higher alcohols over H-ZSM-5. Appl Catal A 363(1–2):115–121CrossRefGoogle Scholar
  4. 4.
    Wan ZJ, Wu W, Li G et al (2016) Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5 zeolite catalysts in methanol to gasoline conversion. Appl Catal A 523:312–320CrossRefGoogle Scholar
  5. 5.
    Kabalan I, Rioland G, Nouali H et al (2014) Synthesis of purely silica MFI-type nanosheets for molecular decontamination. RSC Adv 4(70):37353–37358CrossRefGoogle Scholar
  6. 6.
    Tao HX, Yang H, Liu XH et al (2013) Highly stable hierarchical ZSM-5 zeolite with intra- and inter-crystalline porous structures. Chem Eng J 225:686–694CrossRefGoogle Scholar
  7. 7.
    Zhang MR, Liu XM, Yan ZF (2016) Soluble starch as in situ template to synthesize ZSM-5 zeolite with intracrystal mesopores. Mater Lett 164:543–546CrossRefGoogle Scholar
  8. 8.
    Urata K, Furukawa S, Komatsu T (2014) Location of coke on H-ZSM-5 zeolite formed in the cracking of n-hexane. Appl Catal A 475:335–340CrossRefGoogle Scholar
  9. 9.
    Schoeman BJ, Sterte J, Otterstedt JE (1994) Colloidal zeolite suspensions. Zeolites 14(2):110–116CrossRefGoogle Scholar
  10. 10.
    Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17(10):2494–2513CrossRefGoogle Scholar
  11. 11.
    Mintova S, Gilson JP, Valtchev V (2013) Advances in nanosized zeolites. Nanoscale 5(15):6693–6703Google Scholar
  12. 12.
    Majano G, Darwiche A, Mintova S et al (2009) Seed-induced crystallization of nanosized Na-ZSM-5 crystals. Ind Eng Chem Res 48(15):7084–7091CrossRefGoogle Scholar
  13. 13.
    Zhu HB, Liu ZC, Kong DJ et al (2009) Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. J Colloid Interface Sci 331(2):432–438CrossRefGoogle Scholar
  14. 14.
    Sano T, Yamashita N, Iwami Y et al (1996) Estimation of dealumination rate of ZSM-5 zeolite by adsorption of water vapor. Zeolites 16(4):258–264CrossRefGoogle Scholar
  15. 15.
    Kim K, Ryoo R, Jang HD et al (2012) Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. J Catal 288:115–123CrossRefGoogle Scholar
  16. 16.
    Zhou F, Gao Y, Wu G et al (2017) Improved catalytic performance and decreased coke formation in post-treated ZSM-5 zeolites for methanol aromatization. Microporous Mesoporous Mater 240:96–107CrossRefGoogle Scholar
  17. 17.
    Müller M, Harvey G, Prins R (2000) Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous Mesoporous Mater 34(2):135–147CrossRefGoogle Scholar
  18. 18.
    Meng FJ, Wang YQ, Wang SH (2016) Methanol to gasoline over zeolite ZSM-5: improved catalyst performance by treatment with HF. RSC Advances 6(63):58586–58593CrossRefGoogle Scholar
  19. 19.
    Tarach KA, Martinez-Triguero J, Rey F et al (2016) Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. J Catal 339:256–269CrossRefGoogle Scholar
  20. 20.
    Bjørgen M, Joensen F, Spangsberg-Holm M et al (2008) Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl Catal A 345(1):43–50CrossRefGoogle Scholar
  21. 21.
    Abelló S, Bonilla A, Pérez-Ramírez J (2009) Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Appl Catal A 364(1–2):191–198CrossRefGoogle Scholar
  22. 22.
    Li J, Li XY, Zhou GQ et al (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A 470:115–122CrossRefGoogle Scholar
  23. 23.
    Jacobsen CJH, Madsen C, Houzvicka J et al (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122(29):7116–7117CrossRefGoogle Scholar
  24. 24.
    Wei XT, Smirniotis PG (2006) Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous Mesoporous Mater 89(1–3):170–178CrossRefGoogle Scholar
  25. 25.
    Schmidt I, Boisen A, Gustavsson E et al (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13(12):4416–4418CrossRefGoogle Scholar
  26. 26.
    Tao YS, Kanoh H, Kaneko K (2003) ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc 125(20):6044–6045CrossRefGoogle Scholar
  27. 27.
    Janssen AH, Schmidt I, Jacobsen CJH et al (2003) Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater 65(1):59–75CrossRefGoogle Scholar
  28. 28.
    Liu SZ, Cao XJ, Li LS et al (2008) Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids Surf A 318(1–3):269–274CrossRefGoogle Scholar
  29. 29.
    Wang LF, Zhang Z, Yin CY et al (2010) Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater 131(1–3):58–67Google Scholar
  30. 30.
    Song JW, Ren LM, Yin CY et al (2008) Stable, porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer. J Phys Chem C 112(23):8609–8613CrossRefGoogle Scholar
  31. 31.
    Xiao FS, Wang LF, Yin CY et al (2006) Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew Chem Int Ed 45(19):3090–3093CrossRefGoogle Scholar
  32. 32.
    Zhou J, Hua ZL, Liu ZC et al (2011) Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catalysis 1(4):287–291CrossRefGoogle Scholar
  33. 33.
    Zhao J, Yin YC, Li Y et al (2016) Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chem Eng J 284:405–411CrossRefGoogle Scholar
  34. 34.
    Zhao J, Wang GG, Qin LH et al (2016) Synthesis and catalytic cracking performance of mesoporous zeolite Y. Catal Commun 73:98–102CrossRefGoogle Scholar
  35. 35.
    Zhou XX, Chen HR, Zhu Y et al (2013) Dual-mesoporous ZSM-5 zeolite with highly b-axis-oriented large mesopore channels for the production of benzoin ethyl ether. Chemistry 19(30):10017–10023CrossRefGoogle Scholar
  36. 36.
    Zhu Y, Hua ZL, Zhou J et al (2011) Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry 17(51):14618–14627CrossRefGoogle Scholar
  37. 37.
    Chen HB, Wang YQ, Meng FJ (2016) Conversion of methanol to propylene over nano-sized ZSM-5 zeolite aggregates synthesized by a modified seed-induced method with CTAB. RSC Adv 6(80):76642–76651CrossRefGoogle Scholar
  38. 38.
    Jiang JL, Yang Y, Duanmu CS et al (2012) Preparation of hollow ZSM-5 crystals in the presence of polyacrylamide. Microporous Mesoporous Mater 163:11–20CrossRefGoogle Scholar
  39. 39.
    Xue T, Chen L, Wang YM et al (2012) Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template. Microporous Mesoporous Mater 156:97–105CrossRefGoogle Scholar
  40. 40.
    Wang Y, Ma JH, Ren FF et al (2016) Hierarchical architectures of ZSM-5 nanocrystalline aggregates with particular catalysis for lager molecule reaction. Microporous Mesoporous Mater 240:22–30CrossRefGoogle Scholar
  41. 41.
    Meng FJ, Wang YQ, Wang SG et al (2017) Synthesis of ZSM-5 aggregates by a seed-induced method and catalytic performance in methanol-to-gasoline conversion. C R Chim 20(4):385–394MathSciNetCrossRefGoogle Scholar
  42. 42.
    Li HY, Wang YQ, Meng FJ et al (2016) Direct synthesis of high-silica nano ZSM-5 aggregates with controllable mesoporosity and enhanced catalytic properties. RSC Adv 6(101):99129–99138CrossRefGoogle Scholar
  43. 43.
    Li HY, Wang YQ, Meng FJ et al (2017) Controllable fabrication of single-crystalline, ultrafine and high-silica hierarchical ZSM-5 aggregates via solid-like state conversion. RSC Adv 7(41):25605–25620CrossRefGoogle Scholar
  44. 44.
    Chen HB, Wang YQ, Meng FJ et al (2017) Aggregates of superfine ZSM-5 crystals: the effect of NaOH on the catalytic performance of methanol to propylene reaction. Microporous Mesoporous Mater 244:301–309CrossRefGoogle Scholar
  45. 45.
    Zhao ZL, Liu YM, Wu HH et al (2009) Hydrothermal synthesis of mesoporous zirconosilicate with enhanced textural and catalytic properties with the aid of amphiphilic organosilane. Microporous Mesoporous Mater 123(1–3):324–330CrossRefGoogle Scholar
  46. 46.
    Ghavipour M, Mehr AS, Wang Y et al (2016) Investigating the mixing sequence and the Si content in SAPO-34 synthesis for selective conversion of methanol to light olefins using morpholine/TEAOH templates. RSC Advances 6(21):17583–17594CrossRefGoogle Scholar
  47. 47.
    Rostami RB, Ghavipour M, Behbahani RM et al (2014) Improvement of SAPO-34 performance in MTO reaction by utilizing mixed-template catalyst synthesis method. J Nat Gas Sci Eng 20:312–318CrossRefGoogle Scholar
  48. 48.
    Ahmadpour J, Taghizadeh M (2015) Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide. C R Chim 18(8):834–847CrossRefGoogle Scholar
  49. 49.
    Li CL, Wang YQ, Shi BF et al (2009) Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater 117(1–2):104–110CrossRefGoogle Scholar
  50. 50.
    Zhou J, Hua ZL, Wu W et al (2011) Hollow mesoporous zeolite microspheres: hierarchical macro-/meso-/microporous structure and exceptionally enhanced adsorption properties. Dalton Trans 40(47):12667–12669CrossRefGoogle Scholar
  51. 51.
    Fu TJ, Chang JW, Shao J et al (2017) Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline. J Energy Chem 26(1):139–146CrossRefGoogle Scholar
  52. 52.
    Jun Y, Lee S, Lee K et al (2017) Effects of secondary mesoporosity and zeolite crystallinity on catalyst deactivation of ZSM-5 in propanal conversion. Microporous Mesoporous Mater 245:16–23CrossRefGoogle Scholar
  53. 53.
    Ni YM, Sun AM, Wu XL (2011) The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol. Microporous Mesoporous Mater 143(2–3):435–442CrossRefGoogle Scholar
  54. 54.
    Niwa M, Katada N, Okumura K (2010) Characterization and design of zeolite catalysts. Springer, BerlinCrossRefGoogle Scholar
  55. 55.
    Zhang HB, Ma YC, Song KS et al (2013) Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: effects of accessibility and strength of acid sites. J Catal 302:115–125CrossRefGoogle Scholar
  56. 56.
    Hu HL, Lv JH, Rui JY et al (2016) The effect of Si/Al ratio on the catalytic performance of hierarchical porous ZSM-5 for catalyzing benzene alkylation with methanol. Catal Sci Technol 6(8):2647–2652CrossRefGoogle Scholar
  57. 57.
    Al-Bogami SA, De Lasa HI (2013) Catalytic conversion of benzothiophene over a H-ZSM5 based catalyst. Fuel 108(11):490–501CrossRefGoogle Scholar
  58. 58.
    Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 24(38):347–354CrossRefGoogle Scholar
  59. 59.
    Jia YM, Wang JW, Zhang K et al (2017) Nanocrystallite self-assembled hierarchical ZSM-5 zeolite microsphere for methanol to aromatics. Microporous Mesoporous Mater 247:103–115CrossRefGoogle Scholar
  60. 60.
    Li MR, Huang Y, Ju C et al (2017) Release of full catalytic capacity of desilicated ZSM-5 in MTH reaction: Al migration along mesopore introduction and post engineering. Microporous Mesoporous Mater 244:7–14CrossRefGoogle Scholar
  61. 61.
    Wang QY, Xu ST, Chen JR et al (2014) Synthesis of mesoporous ZSM-5 catalysts using different mesogenous templates and their application in methanol conversion for enhanced catalyst lifespan. RSC Adv 4(41):21479–21491CrossRefGoogle Scholar
  62. 62.
    Mei CS, Wen PY, Liu ZC et al (2008) Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J Catal 258(1):243–249CrossRefGoogle Scholar
  63. 63.
    Qi RY, Fu TJ, Wan WL et al (2017) Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction. Fuel Process Technol 155:191–199CrossRefGoogle Scholar
  64. 64.
    Wang X, Chen HB, Meng FJ et al (2017) CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template. Microporous Mesoporous Mater 243:271–280CrossRefGoogle Scholar
  65. 65.
    Kim J, Choi M, Ryoo R (2010) Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J Catal 269(1):219–228CrossRefGoogle Scholar
  66. 66.
    Huang L, Qin F, Huang Z et al (2016) Hierarchical ZSM-5 zeolite synthesized by an ultrasound-assisted method as a long-life catalyst for dehydration of glycerol to acrolein. Ind Eng Chem Res 55(27):7318–7327CrossRefGoogle Scholar
  67. 67.
    Ni YM, Sun AM, Wu XL et al (2011) Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. J Nat Gas Chem 20(3):237–242CrossRefGoogle Scholar
  68. 68.
    Yang CG, Qiu MH, Hu SW et al (2016) Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites. Microporous Mesoporous Mater 231:110–116CrossRefGoogle Scholar
  69. 69.
    Grand J, Awala H, Mintova S (2016) Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm 18(5):650–664CrossRefGoogle Scholar
  70. 70.
    Alipour SM, Halladj R, Askari S (2014) Effects of the different synthetic parameters on the crystallinity and crystal size of nanosized ZSM-5 zeolite. Rev Chem Eng 30(3):289–322CrossRefGoogle Scholar
  71. 71.
    Mohamed RM, Aly HM, El-Shahat MF et al (2005) Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite. Microporous Mesoporous Mater 79(1–3):7–12CrossRefGoogle Scholar
  72. 72.
    Fang YM, Hu HQ, Chen GH (2008) In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template. Chem Mater 20(5):1670–1672CrossRefGoogle Scholar
  73. 73.
    Myatt GJ, Budd PM, Price C et al (1994) The influence of surfactants and water-soluble polymers on the crystallization of zeolite NaA. Zeolites 14(3):190–197CrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yaquan Wang
    • 1
    Email author
  • Chunyang Fan
    • 1
  • Hongyao Li
    • 1
  • Xiao Wang
    • 1
  • Fanjun Meng
    • 1
  • Chao Sun
    • 1
  • Liying Sun
    • 1
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations