Transactions of Tianjin University

, Volume 24, Issue 4, pp 361–369 | Cite as

Fe–Mn/MCM-41: Preparation, Characterization, and Catalytic Activity for Methyl Orange in the Process of Heterogeneous Fenton Reaction

  • Xubin Zhang
  • Jianxin Dong
  • Zhencheng Hao
  • Wangfeng Cai
  • Fumin WangEmail author
Research Article


Active Fe- and Mn-loaded MCM-41 (Fe–Mn/MCM-41), which was synthesized via a hydrothermal reaction followed by impregnation, is used in the heterogeneous Fenton reaction to degrade methyl orange (MO) in aqueous solution. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption isotherm analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Compared with Fe/MCM-41 and Mn/MCM-41, Fe–Mn/MCM-41 showed higher activity for MO degradation and mineralization. Effects of various operating parameters, such as pH, Mn content, and H2O2 dosage, on the degradation process were subsequently investigated. Results of experiments on the effect of radical scavengers revealed that the degradation of MO could be attributed to oxidation by HO·. The synergy of Fe and Mn species in the Fenton oxidation process was also explained.


Heterogeneous Fenton Fe–Mn/MCM-41 nanocomposite Higher activity Synergy 



This study was supported by the National Basic Research Program of China (“973” Program, No. 2012CB720302) and Program for Changjiang Scholars and the Innovative Research Team in Universities (No. IRT0936).


  1. 1.
    Fernandez J, Maruthamuthu P, Kiwi J (2004) Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. J Photochem Photobiol A 161(2–3):185–192Google Scholar
  2. 2.
    Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  3. 3.
    Fu HB, Pan CS, Yao WQ et al (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109(47):22432–22439CrossRefGoogle Scholar
  4. 4.
    Nguyen TD, Phan NH, Do MH et al (2011) Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J Hazard Mater 185(2–3):653–661CrossRefGoogle Scholar
  5. 5.
    Li J, Ma WH, Huang YP et al (2004) Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe (bpy)32+ in water. Appl Catal B 48(1):17–24CrossRefGoogle Scholar
  6. 6.
    Quici N, Morgada ME, Piperata G et al (2005) Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes. Catal Today 101(3–4):253–260CrossRefGoogle Scholar
  7. 7.
    Hammouda SB, Adhoum N, Monser L (2015) Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process. J Hazard Mater 294:128–136CrossRefGoogle Scholar
  8. 8.
    Gao LZ, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583CrossRefGoogle Scholar
  9. 9.
    Xu LJ, Wang JL (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46(18):10145–10153CrossRefGoogle Scholar
  10. 10.
    Muthuvel I, Swaminathan M (2007) Photoassisted Fenton mineralisation of acid violet 7 by heterogeneous Fe(III)-Al2O3 catalyst. Catal Commun 8(7):981–986CrossRefGoogle Scholar
  11. 11.
    Iurascu B, Siminiceanu I, Vione D et al (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43(5):1313–1322CrossRefGoogle Scholar
  12. 12.
    Chen QQ, Wu PX, Li YY et al (2009) Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. J Hazard Mater 168(2–3):901–908CrossRefGoogle Scholar
  13. 13.
    Duarte F, Maldonado-Hódar FJ, Pérez-Cadenas AF et al (2009) Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels. Appl Catal B 85(3–4):139–147CrossRefGoogle Scholar
  14. 14.
    Ramirez JH, Maldonado-Hódar FJ, Pérez-Cadenas AF et al (2007) Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl Catal B 75(3–4):312–323CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Olmos R, Roland U, Toufar H et al (2009) Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Appl Catal B 89(3):356–364CrossRefGoogle Scholar
  16. 16.
    Gonzalez-Olmos R, Martin MJ, Georgi A et al (2012) Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl Catal B 125(3):51–58CrossRefGoogle Scholar
  17. 17.
    Oliveira P, Machado A, Ramos AM et al (2009) MCM-41 anchored manganese salen complexes as catalysts for limonene oxidation. Microporous Mesoporous Mater 120(3):432–440CrossRefGoogle Scholar
  18. 18.
    Singh UG, Williams RT, Hallam KR et al (2005) Exploring the distribution of copper–Schiff base complex covalently anchored onto the surface of mesoporous MCM-41 silica. J Solid State Chem 178(11):3405–3413CrossRefGoogle Scholar
  19. 19.
    Chen ZW, Jiao Z, Pan DY et al (2012) Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure. Chem Rev 112(7):3833–3855CrossRefGoogle Scholar
  20. 20.
    Chen C, Ding GJ, Zhang D et al (2012) Microstructure evolution and advanced performance of Mn3O4 nanomorphologies. Nanoscale 4(8):2590–2596CrossRefGoogle Scholar
  21. 21.
    Einaga H, Yamamoto S, Maeda N et al (2015) Structural analysis of manganese oxides supported on SiO2, for benzene oxidation with ozone. Catal Today 242(2):287–293CrossRefGoogle Scholar
  22. 22.
    Tang QH, Hu SQ, Chen YT et al (2010) Highly dispersed manganese oxide catalysts grafted on SBA-15: synthesis, characterization and catalytic application in trans-stilbene epoxidation. Microporous Mesoporous Mater 132(3):501–509CrossRefGoogle Scholar
  23. 23.
    Li JF, Yan NQ, Qu Z et al (2017) Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures. Environ Sci Technol 44(1):426–431CrossRefGoogle Scholar
  24. 24.
    Zhao J, Yang JJ, Ma J (2014) Mn (II)-enhanced oxidation of benzoic acid by Fe(III)/H2O2 system. Chem Eng J 239(3):171–177CrossRefGoogle Scholar
  25. 25.
    Li YF, Sun JH, Sun SP (2016) Mn2+-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions. J Hazard Mater 313:193–200CrossRefGoogle Scholar
  26. 26.
    Huang RT, Liu YY, Chen ZW et al (2015) Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis. ACS Appl Mater Interfaces 7(7):1–39Google Scholar
  27. 27.
    Cai Q, Cui FZ, Chen XH et al (2009) Nanosphere of ordered silica MCM-41 hydrothermally synthesized with low surfactant concentration. Chem Lett 29(9):1044–1045CrossRefGoogle Scholar
  28. 28.
    Yonezawa T, Toshima N, Wakai C et al (2000) Structure of monoalkyl-monocationic surfactants on the microscopic three-dimensional platinum surface in water. Colloids Surf A 169(1):35–45CrossRefGoogle Scholar
  29. 29.
    Jiang YQ, Lin KF, Zhang YN et al (2012) Fe-MCM-41 nanoparticles as versatile catalysts for phenol hydroxylation and for Friedel–Crafts alkylation. Appl Catal A 445–446:172–179CrossRefGoogle Scholar
  30. 30.
    Huang RH, Lan BY, Chen ZY et al (2012) Catalytic ozonation of p-chlorobenzoic acid over MCM-41 and Fe loaded MCM-41. Chem Eng J 180(3):19–24CrossRefGoogle Scholar
  31. 31.
    Gaydhankar TR, Samuel V, Joshi PN (2006) Hydrothermal synthesis of MCM-41 using differently manufactured amorphous dioxosilicon sources. Mater Lett 60(7):957–961CrossRefGoogle Scholar
  32. 32.
    Shen SH, Guo LJ (2007) Hydrothermal synthesis, characterization, and photocatalytic performances of Cr incorporated, and Cr and Ti co-incorporated MCM-41 as visible light photocatalysts for water splitting. Catal Today 129(3–4):414–420CrossRefGoogle Scholar
  33. 33.
    Tsoncheva T, Rosenholm J, Linden M et al (2008) Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method. Microporous Mesoporous Mater 112(1):327–337CrossRefGoogle Scholar
  34. 34.
    Rath D, Parida KM (2011) Copper and nickel modified MCM-41 An efficient catalyst for hydrodehalogenation of chlorobenzene at room temperature. Ind Eng Chem Res 50(5):2839–2849CrossRefGoogle Scholar
  35. 35.
    Cuello NI, Elías VR, Torres CER et al (2015) Development of iron modified MCM-41 as promising nano-composites with specific magnetic behavior. Microporous Mesoporous Mater 203:106–115CrossRefGoogle Scholar
  36. 36.
    Han BQ, Zhang F, Feng ZP et al (2014) A designed Mn2O3/MCM-41 nanoporous composite for methylene blue and rhodamine B removal with high efficiency. Ceram Int 40(6):8093–8101CrossRefGoogle Scholar
  37. 37.
    Sheydaei M, Aber S, Khataee A (2014) Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. J Ind Eng Chem 20(4):1772–1778CrossRefGoogle Scholar
  38. 38.
    Guo J, Al-Dahhan M (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind Eng Chem Res 42(12):2450–2460CrossRefGoogle Scholar
  39. 39.
    Cheng G, Lin J, Lu J et al (2015) Advanced treatment of pesticide-containing wastewater using Fenton reagent enhanced by microwave electrodeless ultraviolet. Biomed Res Int 1–3:205903Google Scholar
  40. 40.
    Xia M, Long MC, Yang YD et al (2011) A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution. Appl Catal B 110:118–125CrossRefGoogle Scholar
  41. 41.
    Dutta K, Mukhopadhyay S, Bhattacharjee S et al (2001) Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater 84(1):57–71CrossRefGoogle Scholar
  42. 42.
    Watts RJ, Bottenberg BC, Hess TF et al (1999) Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environ Sci Technol 33:3432–3437CrossRefGoogle Scholar
  43. 43.
    Watts RJ, Sarasa J, Loge FJ et al (2005) Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions. J Environ Eng 131(1):158–164CrossRefGoogle Scholar
  44. 44.
    Do SH, Batchelor B, Lee HK et al (2009) Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism. Chemosphere 75(1):8–12CrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xubin Zhang
    • 1
  • Jianxin Dong
    • 1
  • Zhencheng Hao
    • 1
  • Wangfeng Cai
    • 1
  • Fumin Wang
    • 1
    Email author
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations