Advertisement

Transactions of Tianjin University

, Volume 24, Issue 4, pp 340–350 | Cite as

Ni2P/ZrO2-SBA-15 Dibenzothiophene Hydrodesulfurization Catalysts: Preparation, Characterization and Evaluation

  • Hongqin Ma
  • Qiurong Li
  • Yang Shi
  • Xiao Sun
Research Article
  • 88 Downloads

Abstract

Ni2P/ZrO2-SBA-15 catalysts with different zirconium n-propoxide/SBA-15 mass ratios were synthesized to evaluate their dibenzothiophene hydrodesulfurization catalytic activity. Effect of ZrO2 introduction was investigated. Supports and catalysts were characterized by BET, XRD, 29Si NMR, XPS and FTIR. The results indicated that zirconium was incorporated into SBA-15 in the forms of [(–O–)2Si(–O–Zr)2] and/or [(–O–)3Si–O–Zr], and that the SBA-15 framework structure was maintained after incorporation of ZrO2. With zirconium content increasing, ZrO2 was transformed from amorphous phase to tetragonal phase. Zirconium incorporation into SBA-15 supports could facilitate to form more dispersed Ni2P active phase. There might be some interaction occurring between the P and Zr species. In addition to Ni2P, another kind of active phase, ZrP, was formed, which might exhibit a better HDS activity than Ni2P. It was observed that at a temperature of 280 °C, pressure of 3.0 MPa, WHSV of 6.5 h−1 and H2 to oil ratio of 450, the Ni2P/Zr-SBA(1.5) catalyst, where 1.5 represents zirconium n-propoxide/SBA-15 mass ratio, showed the highest DBT conversion, which was 86.6%, almost 35% higher than that of the Ni2P/Zr-SBA(0) catalyst.

Keywords

Nickel phosphide Hydrodesulfurization ZrO2 modified SBA-15 

References

  1. 1.
    Hao L, Xiong G, Liu L et al (2016) Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene. Chin J Catal 37(3):412–419CrossRefGoogle Scholar
  2. 2.
    Liu H, Yin C, Zhang H et al (2016) Sustainable synthesis of ammonium nickel molybdate for hydrodesulfurization of dibenzothiophene. Chin J Catal 37(9):1502–1511CrossRefGoogle Scholar
  3. 3.
    Chianelli RR (1984) Fundamental studies of transition metal sulfide hydrodesulfurization catalysts. Catal Rev Sci Eng 26(3–4):361–393CrossRefGoogle Scholar
  4. 4.
    Tops⊘ e H, Clausen BS (1984) Importance of Co-Mo-S type structures in hydrodesulfurization. Catalysis Reviews Science and Engineering 26(3–4):395–420CrossRefGoogle Scholar
  5. 5.
    Wang A, Ruan L, Teng Y et al (2005) Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts. J Catal 229(2):314–321CrossRefGoogle Scholar
  6. 6.
    Infantes-Molina A, Cecilia JA, Pawelec B et al (2010) Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS–HDN competitive reactions. Appl Catal A 390(1):253–263CrossRefGoogle Scholar
  7. 7.
    Cho KS, Seo HR, Lee YK (2011) A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization. Catal Commun 12(6):470–474CrossRefGoogle Scholar
  8. 8.
    Liu D, Wang A, Liu C et al (2016) Bulk and Al2O3-supported Ni2P HDS catalysts prepared by separating the nickel and hypophosphite sources. Catal Commun 77:13–17CrossRefGoogle Scholar
  9. 9.
    Song H, Dai M, Song H et al (2014) Synthesis of a Ni2P catalyst supported on anatase-TiO2 whiskers with high hydrodesulfurization activity based on triphenylphosphine. Catal Commun 43:151–154CrossRefGoogle Scholar
  10. 10.
    Jun REN, Wang JG, Li JF et al (2007) Density functional theory study on crystal nickel phosphides. J Fuel Chem Technol 35(4):458–464CrossRefGoogle Scholar
  11. 11.
    Stinner C, Tang Z, Haouas M et al (2002) Preparation and 31P NMR characterization of nickel phosphides on silica. J Catal 208(2):456–466CrossRefGoogle Scholar
  12. 12.
    Shu Y, Lee YK, Oyama ST (2005) Structure-sensitivity of hydrodesulfurization of 4, 6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts. J Catal 236(1):112–121CrossRefGoogle Scholar
  13. 13.
    Sun F, Wu W, Wu Z et al (2004) Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and NiMoP catalysts. J Catal 228(2):298–310CrossRefGoogle Scholar
  14. 14.
    Fan Y, Xiao H, Shi G et al (2011) Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts. J Catal 279(1):27–35CrossRefGoogle Scholar
  15. 15.
    Nikulshin PA, Ishutenko DI, Mozhaev AA et al (2014) Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. J Catal 312:152–169CrossRefGoogle Scholar
  16. 16.
    Li X, Chai Y, Liu B et al (2014) Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over CoMo catalysts supported on γ-Alumina with different morphology. Ind Eng Chem Res 53(23):9665–9673CrossRefGoogle Scholar
  17. 17.
    La Parola V, Dragoi B, Ungureanu A et al (2010) New HDS catalysts based on thiol functionalized mesoporous silica supports. Appl Catal A 386(1):43–50CrossRefGoogle Scholar
  18. 18.
    Sundaramurthy V, Eswaramoorthi I, Dalai AK et al (2008) Hydrotreating of gas oil on SBA-15 supported NiMo catalysts. Microporous Mesoporous Mater 111(1):560–568CrossRefGoogle Scholar
  19. 19.
    Dhar GM, Kumaran GM, Kumar M et al (2005) Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts. Catal Today 99(3):309–314CrossRefGoogle Scholar
  20. 20.
    Gutiérrez OY, Singh S, Schachtl E et al (2014) Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization. ACS Catal 4(5):1487–1499CrossRefGoogle Scholar
  21. 21.
    da Silva Neto AV, Leite ER, da Silva VT et al (2016) NiMoS HDS catalysts–The effect of the Ti and Zr incorporation into the silica support and of the catalyst preparation methodology on the orientation and activity of the formed MoS2 slabs. Appl Catal A 528:74–85CrossRefGoogle Scholar
  22. 22.
    Lu J, Kosuda KM, Van Duyne RP et al (2009) Surface acidity and properties of TiO2/SiO2 catalysts prepared by atomic layer deposition: UV–visible diffuse reflectance, DRIFTS, and visible Raman spectroscopy studies. J Phys Chem C 113(28):12412–12418CrossRefGoogle Scholar
  23. 23.
    Nava R, Pawelec B, Morales J et al (2009) Comparison of the morphology and reactivity in HDS of CoMo/HMS, CoMo/P/HMS and CoMo/SBA-15 catalysts. Microporous Mesoporous Mater 118(1):189–201CrossRefGoogle Scholar
  24. 24.
    Klimova T, Gutiérrez O, Lizama L et al (2010) Advantages of ZrO2- and TiO2-SBA-15 mesostructured supports for hydrodesulfurization catalysts over pure TiO2, ZrO2 and SBA-15. Microporous Mesoporous Mater 133(1):91–99CrossRefGoogle Scholar
  25. 25.
    Gutiérrez OY, Klimova T (2011) Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4, 6-DMDBT. J Catal 281(1):50–62CrossRefGoogle Scholar
  26. 26.
    Valencia D, Klimova T (2011) Effect of the support composition on the characteristics of NiMo and CoMo/(Zr) SBA-15 catalysts and their performance in deep hydrodesulfurization. Catal Today 166(1):91–101CrossRefGoogle Scholar
  27. 27.
    Gutiérrez OY, Fuentes GA, Salcedo C et al (2006) SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts. Catal Today 116(4):485–497CrossRefGoogle Scholar
  28. 28.
    Gutiérrez OY, Pérez F, Fuentes GA et al (2008) Deep HDS over NiMo/Zr-SBA-15 catalysts with varying MoO3 loading. Catal Today 130(2):292–301CrossRefGoogle Scholar
  29. 29.
    Gutiérrez OY, Valencia D, Fuentes GA et al (2007) Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species: synthesis, characterization and evaluation in 4, 6-dimethyldibenzothiophene hydrodesulfurization. J Catal 249(2):140–153CrossRefGoogle Scholar
  30. 30.
    Li F, Song H, Zhang H (2012) Study on the hydrodesulfurization and the hydrodenitrogenation over Al2O3-ZrO2 supported Ni2P catalysts. Chem Ind Eng Prog 5:1047–1051Google Scholar
  31. 31.
    Garg S, Soni K, Kumaran GM et al (2008) Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo NiMo hydrotreating catalysts. Catal Today 130(2):302–308CrossRefGoogle Scholar
  32. 32.
    Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552CrossRefGoogle Scholar
  33. 33.
    Kenneth JD, Smith ME (2002) Multinuclear solid-state nuclear magnetic resonance of inorganic materials pergamon materials series. Pergamon Press, New YorkGoogle Scholar
  34. 34.
    Song H, Wang J, Wang Z et al (2014) Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst. J Catal 311:257–265CrossRefGoogle Scholar
  35. 35.
    Cecilia JA, Infantes-Molina A, Rodríguez-Castellón E et al (2009) A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene. J Catal 263(1):4–15CrossRefGoogle Scholar
  36. 36.
    Alexander MR, Short RD, Jones FR et al (1999) A study of HMDSO/O2 plasma deposits using a high-sensitivity and energy resolution XPS instrument: curve fitting of the Si 2p core level. Appl Surf Sci 137(1):179–183CrossRefGoogle Scholar
  37. 37.
    Paparazzo E (1996) On the XPS analysis of Si–OH groups at the surface of silica. Surf Interface Anal 24(10):729–730CrossRefGoogle Scholar
  38. 38.
    Jones DJ, Jiménez-Jiménez J, Jiménez-López A et al (1997) Surface characterisation of zirconium-doped mesoporous silica. Chem Commun 5:431–432CrossRefGoogle Scholar
  39. 39.
    Galtayries A, Sporken R, Riga J et al (1998) XPS comparative study of ceria/zirconia mixed oxides: powders and thin film characterisation. J Electron Spectrosc Relat Phenom 88:951–956CrossRefGoogle Scholar
  40. 40.
    Pan B, Zhang Q, Du W et al (2007) Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism. Water Res 41(14):3103–3111CrossRefGoogle Scholar
  41. 41.
    Brunet E, Colón JL, Clearfield A (2015) Tailored organic-inorganic materials. Wiley, New JerseyCrossRefGoogle Scholar
  42. 42.
    Guittet MJ, Crocombette JP, Gautier-Soyer M (2001) Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: charge transfer and electrostatic effects. Phys Rev B 63(12):125117CrossRefGoogle Scholar
  43. 43.
    Fu J, Zheng P, Du P et al (2015) Zirconium modified TUD-1 mesoporous catalysts for the hydrodesulfurization of FCC diesel. Appl Catal A 502:320–328CrossRefGoogle Scholar
  44. 44.
    Fu W, Zhang L, Wu D et al (2016) Mesoporous zeolite ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4, 6-dimethyldibenzothiophene. Ind Eng Chem Res 55(26):7085–7095CrossRefGoogle Scholar
  45. 45.
    Chen T, Yang B, Li S et al (2011) Ni2P catalysts supported on titania-modified alumina for the hydrodesulfurization of dibenzothiophene. Ind Eng Chem Res 50(19):11043–11048CrossRefGoogle Scholar
  46. 46.
    El Haskouri J, Cabrera S, Guillem C et al (2002) Atrane precursors in the one-pot surfactant-assisted synthesis of high zirconium content porous silicas. Chem Mater 14(12):5015–5022CrossRefGoogle Scholar
  47. 47.
    Wang L, Wu XL, Xu WH et al (2012) Stable organic-inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment. ACS Appl Mater Interfaces 4(5):2686–2692CrossRefGoogle Scholar
  48. 48.
    Liu QY, Liao YH, Wang TJ et al (2014) One-pot transformation of cellulose to sugar alcohols over acidic metal phosphates combined with Ru/C. Ind Eng Chem Res 53(32):12655–12664CrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations