Advertisement

Bifactor analysis of motivation for charity sport event participation

  • Weisheng Chiu
  • Young-joo Lee
  • Doyeon WonEmail author
Original Article
  • 645 Downloads

Abstract

The purpose of this study was to examine the utility of the existing subscales of charity sport events (CSEs) participation motivation by adopting both a second-order modeling and a bifactor modeling approaches. The results with 488 college students revealed that the bifactor model provided a better interpretation of the data compared to second-order model. The five-factor CSE motivation significantly predict the intention to participate in CSEs along with two domain-specific motivations, namely ‘sport and event’ and ‘cause’ while other three domain-specific motivations including ‘philanthropic’, ‘social interaction’, and ‘reference group’ are not statistically significant predictors. The results suggest that the bifactor model is more useful in predicting this group’s participation in charity sport events.

Keywords

Charity sport events Bifactor modeling Participation motivation Nonprofit marketing 

References

  1. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.CrossRefGoogle Scholar
  2. Ajzen, I. (2011). The theory of planned behavior: reactions and reflections. Psychology & Health, 26(9), 1113–1127.CrossRefGoogle Scholar
  3. Bennett, R., Mousley, W., Kitchin, P., & Ali-Choudhury, R. (2007). Motivations for participating in charity-affiliated sporting events. Journal of Customer Behaviour, 6(2), 155–178. doi: 10.1362/147539207X223375.CrossRefGoogle Scholar
  4. Billing, J. E., Holt, D., & Smith, J. (1985). Athletic fund-raising: Exploring the motives behind private donations. Chapel Hill: University of North Carolina Press.Google Scholar
  5. Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41(2), 189–225.CrossRefGoogle Scholar
  6. Chen, F. F., Hayes, A., Carver, C. S., Laurenceau, J.-P., & Zhang, Z. (2012). Modeling general and specific variance in multifaceted constructs: a comparison of the bifactor model to other approaches. Journal of Personality, 80(1), 219–251. doi: 10.1111/j.1467-6494.2011.00739.x.CrossRefGoogle Scholar
  7. Chen, F. F., Jing, Y., Hayes, A., & Lee, J. M. (2013). Two concepts or two approaches? A bifactor analysis of psychological and subjective well-being. Journal of Happiness Studies, 14, 1033–1068.CrossRefGoogle Scholar
  8. Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16.CrossRefGoogle Scholar
  9. Filo, K., Funk, D. C., & O’Brien, D. (2008). It’s really not about the bike: exploring attraction and attachment to the events of the Lance Armstrong Foundation. Journal of Sport Management, 22(5), 501–525.Google Scholar
  10. Filo, K., Funk, D. C., & O’Brien, D. (2011). Examining motivation for charity sport event participation: a comparison of recreation-based and charity-based motives. Journal of Leisure Research, 43(4), 491–518.Google Scholar
  11. Filo, K., Spence, K., & Sparvero, E. (2013). Exploring the properties of community among charity sport event participants. Managing Leisure, 18(3), 194–212.CrossRefGoogle Scholar
  12. Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV. Multivariate Behavioral Research, 48(5), 639–662. doi: 10.1080/00273171.2013.804398.CrossRefGoogle Scholar
  13. Gladden, J. M., Mahony, D. F., & Apostolopoulou, A. (2005). Toward a better understanding of college athletic donors: what are the primary motives? Sport Marketing Quarterly, 14, 18–30.Google Scholar
  14. Grant Space. (2014). Knowledge base. Retrieved 2014, July 1, from: http://grantspace.org/tools/knowledge-base/Funding-Resources/General/special-events.
  15. Gustafsson, J.-E., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28(4), 407.CrossRefGoogle Scholar
  16. Hendriks, M., & Peelen, E. (2013). Persons in action: linking event participation motivation to charitable giving and sports. International Journal of Nonprofit and Voluntary Sector Marketing, 18, 60–72.CrossRefGoogle Scholar
  17. Luo, X. (2005). A contingent perspective on the advantages of stores’ strategic philanthropy for influencing consumer behaviour. Journal of Consumer Behaviour, 4(5), 390–401.CrossRefGoogle Scholar
  18. Manning, M. (2009). The effects of subjective norms on behaviour in the theory of planned behaviour: a meta-analysis. British Journal of Social Psychology, 48(4), 649–705.CrossRefGoogle Scholar
  19. McInerney, D. M., Brown, G. T., & Liem, G. A. D. (2009). Achievement motivation in cross-cultural context: Application of personal investment theory in educational settings. In A. Kaplan, S. A. Karabenick, & E. De Groot (Eds.), Culture, self, and motivation: Essays in honor of Martin L. Maehr (pp. 213–241). Charlotte: Information Age Publishing.Google Scholar
  20. Muthén, L. K., & Muthén, B. O. (2010). Mplus software (Version 6). Los Angeles: Muthén & Muthén.Google Scholar
  21. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.Google Scholar
  22. Reise, S. P., Morizot, J., & Hays, R. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(1), 19–31. doi: 10.1007/s11136-007-9183-7.CrossRefGoogle Scholar
  23. Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544–559. doi: 10.1080/00223891.2010.496477.CrossRefGoogle Scholar
  24. Rindskopf, D., & Rose, T. (1988). Some theory and applications of confirmatory second-order factor analysis. Multivariate Behavioral Research, 23(1), 51–67.CrossRefGoogle Scholar
  25. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399–419). Newbury Park: Sage.Google Scholar
  26. Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507–514.CrossRefGoogle Scholar
  27. Scott, A., & Solomon, P. J. (2003). The marketing of cause-related events: a study of participants as consumers. Journal of Nonprofit & Public Sector Marketing, 11(2), 43–66. doi: 10.1300/J054v11n02_03.CrossRefGoogle Scholar
  28. Shank, M. D. (2008). Sports marketing: A strategic perspective (4th ed.). Upper Saddle River: Pearson Prentice Hall.Google Scholar
  29. Snelgrove, R., & Wood, L. (2010). Attracting and leveraging visitors at a charity cycling event. Journal of Sport & Tourism, 15(4), 269–285. doi: 10.1080/14775085.2010.533918.CrossRefGoogle Scholar
  30. Sullivan, P., & Clolery, P. (2014). Volunteers hiding in plain sight. The NonProfit Times, p. 6.Google Scholar
  31. Taylor, R., & Shanka, T. (2008). Cause for event: not-for-profit marketing through participant sports events. Journal of Marketing Management, 24(9–10), 945–958. doi: 10.1362/026725708X381984.CrossRefGoogle Scholar
  32. van Dinther, M., Dochy, F., Segers, M., & Braeken, J. (2013). The construct validity and predictive validity of a self-efficacy measure for student teachers in competence-based education. Studies in Educational Evaluation, 39(3), 169–179. doi: 10.1016/j.stueduc.2013.05.001.CrossRefGoogle Scholar
  33. Wang, J., & Wang, X. (2012). Structural equation modeling: Applications using Mplus. West Sussex: Wiley.CrossRefGoogle Scholar
  34. Webber, D. (2004). Understanding charity fundraising events. International Journal of Nonprofit and Voluntary Sector Marketing, 9(2), 122–134. doi: 10.1002/nvsm.239.CrossRefGoogle Scholar
  35. Wiesner, M., & Schanding, G. T. (2013). Exploratory structural equation modeling, bifactor models, and standard confirmatory factor analysis models: application to the BASC-2 behavioral and emotional screening system teacher form. Journal of School Psychology, 51(6), 751–763. doi: 10.1016/j.jsp.2013.09.001.CrossRefGoogle Scholar
  36. Wilson, J., & Musick, M. (1997). Who cares? Toward an integrated theory of volunteer work. American Sociological Review, 62(5), 694–713.CrossRefGoogle Scholar
  37. Won, D., & Park, M. (2010). Motivating factors influencing college students’ participation in charity sport events. International Journal of Sport Management and Marketing, 8(3), 296–321.CrossRefGoogle Scholar
  38. Won, D., Park, M., & Turner, B. A. (2010). Motivations for participating in health related charity sport events. Journal of Venue and Event Management, 1(1), 17–44.Google Scholar
  39. Yang, Y., Sun, Y., Zhang, Y., Jiang, Y., Tang, J., Zhu, X., & Milao, D. (2013). Bifactor item response theory model of acute stress response. PLoS ONE, 8(6), e65291.CrossRefGoogle Scholar
  40. Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165–200. doi: 10.1111/0081-1750.00078.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Sport & Leisure StudiesYonsei UniversitySeoulKorea
  2. 2.School of Economic, Political & Policy SciencesUniversity of Texas at DallasRichardsonUSA

Personalised recommendations