Psychological Injury and Law

, Volume 6, Issue 1, pp 75–80 | Cite as

Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant® in Patients with Traumatic Brain Injury

  • David E. RossEmail author
  • Travis J. Graham
  • Alfred L. Ochs


Decades of research have shown that the brain atrophies after traumatic brain injury (TBI). However, multiple practical issues made it difficult to detect brain atrophy in individual patients with mild to moderate TBI. This situation improved by 2007 with the FDA approval of NeuroQuant®, a commercially available, computer-automated software program for measuring MRI brain volume in human subjects. Several peer-reviewed scientific studies have supported the reliability and validity of NeuroQuant®. This review addresses whether NeuroQuant® meets the Daubert standard for admissibility in court cases involving persons with TBI. The review finds that NeuroQuant® is an objective, reliable, and practical means of measuring brain volume and therefore can be an important tool for measuring the effects of TBI on brain volume in clinical or medicolegal settings.


Traumatic brain injury Magnetic resonance imaging Daubert NeuroQuant Atrophy 



The authors would like to thank Matthew W. Broughton, Esq., for his helpful comments on this article.

Conflict of Interest

The authors report no financial conflicts of interest or financial relationships with respect to any of the companies or products discussed in this manuscript.


  1. Bigler, E. D. (2005). Structural imaging. In J. M. Silver, T. W. McAllister & S. C. Yudofsky (Eds.), Textbook of traumatic brain injury (pp. 79–105). Washington: American Psychiatric Publishing, Inc.Google Scholar
  2. Bigler, E. D. (2011). Structural imaging. In J. M. Silver, T. W. McAllister & S. C. Yudofsky (Eds.), Textbook of traumatic brain injury (pp. 73–90). Washington: American Psychiatric Publishing, Inc.Google Scholar
  3. Bigler, E. D., T. J. Abildskov, E. A. Wilde, S. R. McCauley, X. Li, T. L. Merkley, … H. S. Levin (2010). Diffuse damage in pediatric traumatic brain injury: A comparison of automated versus operator-controlled quantification methods. Neuroimage, 50, 1017–1026.Google Scholar
  4. Birk, S. (2009). Hippocampal atrophy: Biomarker for early AD?: Hippocampal volume in patients with AD is typically two standard deviations below normal. Accessed 25 February 2012
  5. Brewer, J. B. (2009). Fully-automated volumetric MRI with normative ranges: Translation to clinical practice. Behavioural Neurology, 21, 21–28.PubMedGoogle Scholar
  6. Brewer, J. B., Magda, S., Airriess, C. & Smith, M. E. (2009). Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. American Journal of Neuroradiology, 30, 578–580.PubMedCrossRefGoogle Scholar
  7. Ding, K., C. Marquez de la Plata, J. Y. Wang, M. Mumphrey, C. Moore, C. Harper, … R. Diaz_Arrastia (2008). Cerebral atrophy after traumatic white matter injury: Correlation with acute neuroimaging and outcome. Journal of Neurotrauma, 25, 1433–1440.Google Scholar
  8. Fischl, B. (2011). [Freesurfer] general info about FS. Accessed 25 February 2012
  9. Gronenschild, E. H., Habets, P., Jacobs, H. I., Mengelers, R., Rozendaal, N., van Os, J. & Marcelis, M. (2012). The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PloS One, 7, e38234.PubMedCrossRefGoogle Scholar
  10. Heister, D., Brewer, J. B., Magda, S., Blennow, K. & McEvoy, L. K. (2011). Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology, 77, 1619–1628.PubMedCrossRefGoogle Scholar
  11. Hudak, A., Warner, M., Marquez de la Plata, C., Moore, C., Harper, C. & Diaz Arrastia, R. (2011). Brain morphometry changes and depressive symptoms after traumatic brain injury. Psychiatry Research, 191, 160–165.PubMedCrossRefGoogle Scholar
  12. Jack Jr, C. R., M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, … M. W. Weiner (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal Magnetic Resonance Imaging, 27, 685–691.Google Scholar
  13. Jovicich, J., S. Czanner, X. Han, D. Salat, A. v. d. Kouwe, B. Quinn, … B. Fischl (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage, 46, 177–192.Google Scholar
  14. Kovacevic, S., Rafii, M. S. & Brewer, J. B. (2009). High-throughput, fully automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment. Alzheimer Disease and Associated Disorders, 23, 139–145.PubMedCrossRefGoogle Scholar
  15. McCauley, S. R., E. A. Wilde, T. L. Merkley, K. P. Schnelle, E. D. Bigler, J. V. Hunter, … H. S. Levin (2010). Patterns of cortical thinning in relation to event-based prospective memory performance 3 months after moderate to severe traumatic brain injury in children. Developmental Neuropsychology, 35, 318–332.Google Scholar
  16. McEvoy, L. K. & Brewer, J. B. (2010). Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Review of Neurotherapeutics, 10, 1675–1688.PubMedCrossRefGoogle Scholar
  17. McEvoy, L. K., Holland, D., Hagler, D. J., Jr., Fennema Notestine, C., Brewer, J. B. & Dale, A. M. (2011). Mild cognitive impairment: Baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology, 259, 834–843.PubMedCrossRefGoogle Scholar
  18. Menon, D. K., Schwab, K., Wright, D. W. & Maas, A. I. (2010). Position statement: Definition of traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 91, 1637–1640.PubMedCrossRefGoogle Scholar
  19. Merkley, T. L., Bigler, E. D., Wilde, E. A., McCauley, S. R., Hunter, J. V. & Levin, H. S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25, 1343–1345.PubMedCrossRefGoogle Scholar
  20. Ross, D. E. (2011). Review of longitudinal studies of MRI brain volumetry in patients with traumatic brain injury. Brain Injury, 25, 1271–1278.PubMedCrossRefGoogle Scholar
  21. Ross, D. E., Ochs, A. L., Seabaugh, J. & Henshaw, T. (2012a). NeuroQuant® revealed hippocampal atrophy in a patient with traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 24, E33.PubMedCrossRefGoogle Scholar
  22. Ross, D. E., Ochs, A. L., Seabaugh, J. M., DeMark, M. F., Shrader, C. R., Marwitz, J. H. & Havranek, M. D. (2012b). Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: A preliminary study. Brain Injury, 26(12), 1500–1509.PubMedCrossRefGoogle Scholar
  23. Ross, D. E., A. L. Ochs, J. M. Seabaugh & C. R. Shrader (2012). Man vs. Machine: Comparison of radiologists’ interpretations and Neuroquant® volumetric analyses of brain MRIs in patients with traumatic brain injury. Journal of Neuropsychiatry and Clinical Neurosciences. (in press)Google Scholar
  24. Simpson, J. R. (Ed.). (2012). Neuroimaging in forensic psychaitry: From the clinic to the courtroom. West Sussex: Wiley-Blackwell.Google Scholar
  25. Strangman, G. E., O’Neil Pirozzi, T. M., Supelana, C., Goldstein, R., Katz, D. I. & Glenn, M. B. (2010). Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Frontiers in Human Neuroscience, 4, 182.PubMedCrossRefGoogle Scholar
  26. Warner, M. A., T. S. Youn, T. Davis, A. Chandra, d. l. P. C. Marquez, C. Moore, … R. Diaz-Arrastia (2010). Regionally selective atrophy after traumatic axonal injury. Archives Neurology, 67, 1336–1344.Google Scholar
  27. Xu, Y., D. L. McArthur, J. R. Alger, M. Etchepare, D. A. Hovda, T. C. Glenn, … P. M. Vespa (2010). Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. Journal of Cerebral Blood Flow Metabolism, 30, 883–894.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • David E. Ross
    • 1
    • 2
    Email author
  • Travis J. Graham
    • 3
  • Alfred L. Ochs
    • 1
    • 2
  1. 1.Virginia Institute of NeuropsychiatryMidlothianUSA
  2. 2.Virginia Commonwealth UniversityRichmondUSA
  3. 3.Gentry, Locke, Rakes and Moore, LLPRoanokeUSA

Personalised recommendations