Psychological Injury and Law

, Volume 3, Issue 1, pp 50–62 | Cite as

Functional Neuroimaging of Symptom Validity Testing in Traumatic Brain Injury

  • Trevor ChuangKuo Wu
  • Mark D. AllenEmail author
  • Naomi J. Goodrich-Hunsaker
  • Ramona O. Hopkins
  • Erin D. Bigler


The Word Memory Test (WMT) is a commonly used symptom validity test (SVT) that assesses recognition verbal memory. The task has been adapted for use within a functional magnetic resonance imaging (fMRI) paradigm so the neural correlates of WMT activation patterns can be studied. In the current investigation, performance on the delayed recognition subtest of the WMT was examined in two patients who sustained severe TBI and compared to ten healthy controls. The patients underwent comprehensive neuropsychological evaluations and structural MRI. All participants completed two versions of the WMT: full-effort and simulated poor effort conditions. Despite extensive structural brain damage, the fMRI activation patterns during full-effort WMT performance were somewhat similar in the two TBI patients and likewise, somewhat similar to controls. The fMRI activation pattern in both patients demonstrated intact activation of the basic neural structures necessary to perform the WMT. Dissimilar patterns of activation were obtained during the simulated poor effort condition of WMT performance suggesting that fMRI techniques may be sensitive in demonstrating non-credible cognitive performance. The results of our study represent the first fMRI investigation of normal and simulated poor effort SVT performance in individuals with documented brain damage. The implications of fMRI techniques in SVT research and their clinical application are discussed.


Functional magnetic resonance imaging (fMRI) Traumatic brain injury (TBI) Word memory test (WMT) Symptom validity test (SVT) 


  1. Allen, M. D., & Fong, A. K. (2008a). Clinical application of standardized cognitive assessment using fMRI. I. Matrix reasoning. Behavioural Neurology, 20, 127–140.PubMedGoogle Scholar
  2. Allen, M. D., & Fong, A. K. (2008b). Clinical application of standardized cognitive assessment using fMRI. II. Verbal fluency. Behavioural Neurology, 20, 141–152.PubMedGoogle Scholar
  3. Allen, M. D., Bigler, E. D., Larsen, J., Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2007). Functional neuroimaging evidence for high cognitive effort on the Word Memory Test in the absence of external incentives. Brain Injury, 21, 1425–1428.CrossRefPubMedGoogle Scholar
  4. Bianchini, K. J., Mathias, C. W., & Greve, K. W. (2001). Symptom validity testing: a critical review. Clinical Neuropsychology, 15, 19–45.Google Scholar
  5. Boone, K. B. (2008). The need for continuous and comprehensive sampling of effort/response bias during neuropsychological examinations. Clin Neuropsychol, 1-13.Google Scholar
  6. Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. Neuroimage, 15, 523–536.CrossRefPubMedGoogle Scholar
  7. Browndyke, J. N., Paskavitz, J., Sweet, L. H., Cohen, R. A., Tucker, K. A., Welsh-Bohmer, K. A., et al. (2008). Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task. Brain Injury, 22, 481–489.CrossRefPubMedGoogle Scholar
  8. Bush, S. S. (2005). Independent and court-ordered forensic neuropsychological examinations: official statement of the National Academy of Neuropsychology. Archives of Clinical Neuropsychology, 20, 997–1007.CrossRefPubMedGoogle Scholar
  9. Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia, 46, 1813–1827.CrossRefPubMedGoogle Scholar
  10. Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., et al. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage, 14, 1136–1149.CrossRefPubMedGoogle Scholar
  11. D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain and Cognition, 41, 66–86.CrossRefPubMedGoogle Scholar
  12. Dodrill, C. B. (2008). Do patients with psychogenic nonepileptic seizures produce trustworthy findings on neuropsychological tests? Epilepsia, 49(4), 691–695.CrossRefPubMedGoogle Scholar
  13. Ensalada, L. H. (2000). The importance of illness behavior in disability management. Occupational Medicine, 15, 739–754. iv.PubMedGoogle Scholar
  14. Esposito, F., Mulert, C., & Goebel, R. (2009a). Combined distributed source and single-trial EEG-fMRI modeling: application to effortful decision making processes. Neuroimage, 47, 112–121.CrossRefPubMedGoogle Scholar
  15. Esposito, F., Mulert, C., & Goebel, R. (2009b). Combined distributed source and single-trial EEG-fMRI modeling: application to effortful decision making processes. Neuroimage.Google Scholar
  16. Frazier, T. W., Youngstrom, E. A., Naugle, R. I., Haggerty, K. A., & Busch, R. M. (2007). The latent structure of cognitive symptom exaggeration on the Victoria Symptom Validity Test. Archives of Clinical Neuropsychology, 22, 197–211.CrossRefPubMedGoogle Scholar
  17. Frederick, R. I., & Bowden, S. C. (2009). Evaluating constructs represented by symptom validity tests in forensic neuropsychological assessment of traumatic brain injury. Journal of Head Trauma Rehabilitation, 24, 105–122.CrossRefPubMedGoogle Scholar
  18. Gorissen, M., Sanz, J. C., & Schmand, B. (2005). Effort and cognition in schizophrenia patients. Schizophrenia Research, 78, 199–208.CrossRefPubMedGoogle Scholar
  19. Green, P. (2003). Manual for the Word Memory Test for Windows. Edmonton: Green.Google Scholar
  20. Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G., & Deluca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Injury, 23, 420–432.CrossRefPubMedGoogle Scholar
  21. Lee, T. M., Liu, H. L., Tan, L. H., Chan, C. C., Mahankali, S., Feng, C. M., et al. (2002). Lie detection by functional magnetic resonance imaging. Human Brain Mapping, 15, 157–164.CrossRefPubMedGoogle Scholar
  22. Lee, T. M., Liu, H. L., Chan, C. C., Ng, Y. B., Fox, P. T., & Gao, J. H. (2005). Neural correlates of feigned memory impairment. Neuroimage, 28, 305–313.CrossRefPubMedGoogle Scholar
  23. Loring, D. W., Larrabee, G. J., Lee, G. P., & Meador, K. J. (2007). Victoria Symptom Validity Test performance in a heterogenous clinical sample. Clin Neuropsychol, 21, 522–531.CrossRefPubMedGoogle Scholar
  24. McCarter, R. J., Walton, N. H., Brooks, D. N., & Powell, G. E. (2009). Effort Testing in Contemporary UK Neuropsychological Practice. Clinical Neuropsychologist, 1-17.Google Scholar
  25. Morgan, J. E., & Sweet, J. J. (2008). Neuropsychology of malingering casebook. New York: Psychology.Google Scholar
  26. Richman, J., Green, P., Gervais, R., Flaro, L., Merten, T., Brockhaus, R., et al. (2006). Objective tests of symptom exaggeration in independent medical examinations. Journal of Occupational and Environmental Medicine, 48, 303–311.CrossRefPubMedGoogle Scholar
  27. Ruocco, A. C., Swirsky-Sacchetti, T., Chute, D. L., Mandel, S., Platek, S. M., & Zillmer, E. A. (2008). Distinguishing between neuropsychological malingering and exaggerated psychiatric symptoms in a neuropsychological setting. Clinical Neuropsychologist, 22, 547–564.CrossRefPubMedGoogle Scholar
  28. Sarter, M. (2004). Animal cognition: defining the issues. Neuroscience and Biobehavioral Reviews, 28, 645–650.CrossRefPubMedGoogle Scholar
  29. Sarter, M., Gehring, W. J., & Kozak, R. (2006). More attention must be paid: the neurobiology of attentional effort. Brain Res Rev, 51, 145–160.CrossRefPubMedGoogle Scholar
  30. Seghier, M. L., Lazeyras, F., Pegna, A. J., Annoni, J. M., & Khateb, A. (2008). Group analysis and the subject factor in functional magnetic resonance imaging: analysis of fifty right-handed healthy subjects in a semantic language task. Human Brain Mapping, 29, 461–477.CrossRefPubMedGoogle Scholar
  31. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31–56.CrossRefPubMedGoogle Scholar
  32. Weber, B., Kugler, F., & Elger, C. E. (2007). Comparison of implicit memory encoding paradigms for the activation of mediotemporal structures. Epilepsy & Behavior, 10, 442–448.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC. 2010

Authors and Affiliations

  • Trevor ChuangKuo Wu
    • 1
  • Mark D. Allen
    • 1
    • 2
    • 7
    Email author
  • Naomi J. Goodrich-Hunsaker
    • 2
    • 3
  • Ramona O. Hopkins
    • 1
    • 2
    • 4
    • 5
  • Erin D. Bigler
    • 1
    • 2
    • 5
    • 6
  1. 1.Department of PsychologyBrigham Young UniversityProvoUSA
  2. 2.Neuroscience CenterBrigham Young UniversityProvoUSA
  3. 3.NeuroTherapeutics Research Institute, Department of PsychiatryUniversity of California, Davis Medical CenterSacramentoUSA
  4. 4.Department of Medicine, Pulmonary and Critical Care DivisionIntermountain Medical CenterMurrayUSA
  5. 5.The Brain Institute of UtahUniversity of UtahSalt LakeUSA
  6. 6.Department of PsychiatryUniversity of UtahSalt LakeUSA
  7. 7.Department of Psychology and Neuroscience Center, 1001 SWKTBrigham Young UniversityProvoUSA

Personalised recommendations