Advertisement

Journal of Mechanical Science and Technology

, Volume 34, Issue 1, pp 219–228 | Cite as

Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces

  • Seolha Kim
  • Tao WangEmail author
  • Lei Zhang
  • Yuyan JiangEmail author
Original Article
  • 37 Downloads

Abstract

In this study, we investigated droplet impact dynamics offalling water drops (D0 ~ 2.3 mm ) on slippery oil-infused surfaces and compared them to other features of the surfaces, to elucidate the wettability- and roughness-controlled characteristics. We prepared transparent substrates with the designed characteristics, so it would be feasible to visualize the droplet impact dynamics in detail. A wide range of impact kinetics (We ~ 800 (=ρD0Vi2w)) was covered, which gave rise to several types of droplet-impact: gentle spreading, wavy (undulated fingers of spreading edges), droplet break-up, and splashing with small secondary droplets. The basic parameters of the droplet-solid interactions were measured, and events were mapped with respect to the sample surface and impact kinetic conditions. We found that, generally, surface wettability has a major influence on the triple line shape and instability during the impact and retraction process, and thus determines events in of the framework of the dynamic wetting-failure model. Furthermore, while rough conditions promote instability of the impacted droplet, slippery lubricant-infused features tend to dampen perturbations of the spreading/retracting edge.

Keywords

Droplet impact Roughness Slippery oil-infused Wettability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China (NSFC Grant No. 51876203 and No. 51850410519), and supported by the Chinese Academy of Science, President’s International Fellowship Initiative (PIFI Grant No. 2017PE0002).

References

  1. [1]
    C. D. Stow and M. G. Hadfield, An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface, Proc. R. Soc. Lond. A, 373 (1981) 419–441.CrossRefGoogle Scholar
  2. [2]
    R. Rioboo, C. Tropea and M. Marengo, Outcomes from a drop impact on solid surfaces, Atomization Spray, 11 (2001) 155–165.Google Scholar
  3. [3]
    A. L. Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing, Annu. Rev. Fluid. Mech., 38 (2006) 159–192.MathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Tran, H. J. J. Staat, A. Susarrey-Arce, T. C. Foertsch, A. van Houselt, H. J. G. E. Gardeniers, A. Prosperetti, D. Lohse and C. Sun, Droplet impact on superheated micro-structured surfaces, Soft Matter., 9 (12) (2013) 3272–3282.CrossRefGoogle Scholar
  5. [5]
    M. Visaria and I. Mudawar, Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux, Int. J. Heat Mass Transf., 51 (2008) 2398–2410.CrossRefGoogle Scholar
  6. [6]
    Z. Zhang, P. Jiang, D. M. Christopher and X. Liang, Experimental investigation of spray cooling on micro-, nano- and hybrid- structured surface, Int. J. Heat Mass Transf., 80 (2015) 26–37.CrossRefGoogle Scholar
  7. [7]
    H. Kim, B. Truong, J. Buongiorno and L. W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett., 98 (083121) (2011).Google Scholar
  8. [8]
    S. H. Kim, H. S. Ahn, J. Kim, M. Kaviany and M. H. Kim, Dynamics of water droplet on a heated nanotubes surface, Appl. Phys. Lett., 102 (233901) (2013).Google Scholar
  9. [9]
    J. B. Boreyko and C. H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett., 103 (184501) (2009).Google Scholar
  10. [10]
    P. Hao, C. Lv and X. Zhang, Freezing of sessile water droplets on surfaces with various roughness and wettability, Appl. Phys. Lett., 104 (161609) (2014).Google Scholar
  11. [11]
    M. J. Kreder, J. Alvarenga, P. Kim and J. Aizenberg, Design of anti-icing surface: Smooth, textured or slippery?, Nature Reviews Materials, 1 (15003) (2016).Google Scholar
  12. [12]
    C. Clanet, C. Beguin, D. Richard and D. Quere, Maximal deformation of an impact drop, J. Fluid Mech., 517 (2004) 199–208.CrossRefGoogle Scholar
  13. [13]
    M. Pasandideh-Fard, Y. M. Qiao, S. Chandra and J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Phys. Fluids, 8 (1996) 650–659.CrossRefGoogle Scholar
  14. [14]
    C. Ukiwe and D. Y. Kwok, On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces, Langmuir, 21 (2005) 666–673.CrossRefGoogle Scholar
  15. [15]
    J. B. Lee and S. H. Lee, Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces, Langmuir, 27 (2011) 6565–6573.MathSciNetCrossRefGoogle Scholar
  16. [16]
    H. Kim, U. Park, C. Lee, H. Kim, M. H. Kim and J. Kim, Drop splashing on a rough surface: How surface morphology affects splashing threshold, Appl. Phys. Lett., 104 (161608) (2014).Google Scholar
  17. [17]
    S. T. Thoroddsen and J. Sakakibara, Evolution of the fingering pattern of an impacting drop, Phys. Fluids, 10 (1998) 1359–1374.CrossRefGoogle Scholar
  18. [18]
    H. Y. Kim, Z. C. Feng and J. H. Chun, Instability of a liquid jet emerging from a droplet upon collision with a solid surface, Phys. Fluids, 12 (2000) 531–541.CrossRefGoogle Scholar
  19. [19]
    R. D. Deegan, P. Brunet and J. Eggers, Rayleigh-plateau instability causes the crown splash, Physics (2008) arXiv:0806.3050.Google Scholar
  20. [20]
    L. V. Zhang, P. Brunet, J. Eggers and R. D. Deegan, Wavelength selection in the crown splash, Phys. Fluids, 22 (122105) (2010).Google Scholar
  21. [21]
    R. F. Allen, The role of surface tension in splashing, J. Colloid Interface Sci., 51 (1975) 350.CrossRefGoogle Scholar
  22. [22]
    L. Xu, Liquid drop splashing on smooth, rough, and textured surfaces, Phys. Review E, 75 (056316) (2007).Google Scholar
  23. [23]
    L. Xu, W. W. Zhang and S. R. Nagel, Drop splashing on a dry smooth surface, Phys. Rev. Lett., 94 (184505) (2005).Google Scholar
  24. [24]
    C. Mundo, M. Sommerfeld and C. Tropea, Droplet-wall collisions; experimental studies of the deformation and breakup process, Int. J. Multiphase Flow, 21 (1995) 151–173.CrossRefGoogle Scholar
  25. [25]
    K. Range and F. Feuillebois, Influence of surface roughness on liquid drop impact, J. Coll. Interf. Sci., 203 (1998) 16–30.CrossRefGoogle Scholar
  26. [26]
    M. Lee, Y. S. Chang and H. Y. Kim, Drop impact on microwetting patterned surfaces, Phys. Fluids, 22 (072101) (2010).Google Scholar
  27. [27]
    C. Duze, C. Ybert, C. Clanet and L. Bocquet, Making a splash with water repellency, Nature Physics, 3 (2007) 180–183.CrossRefGoogle Scholar
  28. [28]
    A. Latka, A. M. P. Boelens, S. R. Nagel and J. J. de Pablo, Drop splashing is independent of substrate wetting, Phys. Flu. Dyn., 30 (022105) (2018).Google Scholar
  29. [29]
    M. Cao, D. Guo, C. Yu, K. Li, M. Liu and L. Jiang, Waterrepellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: A brief study on the functions and applications, Appl. Mater. Interface, 8 (2015) 3615–3623.CrossRefGoogle Scholar
  30. [30]
    D. Daniel, M. N. Mankin, R. A. Belisle, T. S. Wong and J. Aizenberg, Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures, Appl. Phys. Lett., 102 (231603) (2013).Google Scholar
  31. [31]
    C. Wei, B. Jin, Q. Zhang, X. Zhan and F. Chen, Anti-icing performance of supper-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces, J. Alloys Comp., 765 (2018) 721–730.CrossRefGoogle Scholar
  32. [32]
    K. Rykaczewski, A. T. Paxson, M. Staymates, M. L. Walker, X. Sun, S. Anand, S. Srinivasan, G. H. McKinley, J. Chinn, J. H. J. Scott and K. K. Varanasi, Dropwise condensation of low surface tension fluids on omniphobic surfaces, Sci. Reports, 4 (4158) (2014) 1–8.Google Scholar
  33. [33]
    D. J. Preston, Z. Lu, Y. Song, Y. Zhao, K. L. Wilke, D. S. Antao, M. Louis and E. N. Wang, Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces, Sci. Reports, 8 (540) (2018) 1–8.Google Scholar
  34. [34]
    X. Dai, N. Sun, S. O. Nielsen, B. B. Stogin, J. Wang, S. Yang and T. S. Wong, Hydrophilic directional slippery rough surfaces for water harvesting, Sci. Advances, 4 (2018) 1–10.CrossRefGoogle Scholar
  35. [35]
    C. Lee, H. Kim and Y. Nam, Drop impact dynamics on oilinfused nanostructured surfaces, Langmuir, 30 (2014) 8400–8407.CrossRefGoogle Scholar
  36. [36]
    J. H. Kim and J. P. Rothstein, Droplet impact dynamics on lubricant-infused superhydrophobic surfaces: The role of viscosity ratio, Langmuir, 32 (2016) 10166–10176.CrossRefGoogle Scholar
  37. [37]
    M. Muschi, B. Brudieu, J. Teisseire and A. Sauret, Drop impact dynamics on slippery liquid-infused porous surfaces: Influence of oil thickness, Soft Matter, 14 (7) (2018) 1100–1107.CrossRefGoogle Scholar
  38. [38]
    H. Jo S. H. Kim, H. S. Park and M. H. Kim, Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: Controlled hydrophobic patterns on a hydrophilic substrate, Int. J. Multiphase Flow, 62 (2014) 101–109.CrossRefGoogle Scholar
  39. [39]
    M. Liu, Y. Hou, J. Li, L. Tie and Z. Guo, Transparent slippery liquid-infused nanoparticulate coatings, Chem. Eng. J., 337 (2018) 462–470.CrossRefGoogle Scholar
  40. [40]
    Voinov, Hydrodynamics of wetting, Fluid Dynamics, 11 (1976) 714–721.CrossRefGoogle Scholar
  41. [41]
    H. Kim and S. H. Kim, Nonwettable hierarchical structure effect on droplet impact and spreading dynamics, Langmuir, 34 (2018) 5480–5486.CrossRefGoogle Scholar
  42. [42]
    From Wikipedia “Rayleigh-Plateau Instability”, https://en.wikipedia.org/wiki/Plateau-Rayleigh_instability.

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Precision Mechanical EngineeringKyungpook National UniversitySangjuKorea
  2. 2.Center of Heat and Mass Transfer, Institute of Engineering ThermophysicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations