Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 11, pp 5337–5346 | Cite as

Optimization of process parameters to enhance formability of AA 5182 alloy in deep drawing of square cups by hydroforming

  • Bharatkumar Modi
  • D. Ravi KumarEmail author
Article
  • 9 Downloads

Abstract

The formability of 1 mm thick AA5182 aluminum alloy sheets in deep drawing of square cups by hydroforming was studied. The influence of process parameters (peak pressure, pressure path, and blank holding force) on formability was investigated through numerical simulations and validated with experimental work. The experiments were designed using the Taguchi method. The minimum thickness in the formed cups (at the bottom corners) and the minimum corner radius that can be achieved were considered as the criteria for evaluation of formability. The peak pressure was the most important process parameter affecting thinning and the minimum corner radius that can be achieved. The variation of the pressure path had the least effect on formability. Regression models were developed for prediction of minimum thickness in the cup and the corner radius as a function of peak pressure and blank holding force.

Keywords

Aluminum alloy Deep drawing Formability Hydroforming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. H. Lang, Z. R. Wang, D. C. Kang, S. J. Yuan, S. H. Zhang, J. Danckert and K. B. Nielsen, Hydroforming high lights: sheet hydroforming and tube hydroforming, J. Mater. Process. Tech., 151 (2004) 165–177.CrossRefGoogle Scholar
  2. [2]
    S. K. Singh and D. R. Kumar, Effect of process parameters on product surface finish and thickness variation in hydro-mechanical deep drawing, J. Mater. Process. Tech., 204 (2008) 169–178.CrossRefGoogle Scholar
  3. [3]
    M. Geiger, M. Merklein and M. Cojutti, Hydroforming of inhomogeneous sheet pairs with counter pressure, Prod. Eng. Res. Dev., 3 (2009) 17–22.CrossRefGoogle Scholar
  4. [4]
    P. Hein and F. Vollertsen, Hydroforming of sheet metal pairs, J. Mater. Process. Tech., 87 (1999) 154–164.CrossRefGoogle Scholar
  5. [5]
    K. Matthias, C. Manfred, T. A. Erman, R. Robert, S. Kerstin and T. Michael, Development of ultra high performance concrete dies for sheet metal hydroforming, Prod. Eng. Res. Dev., 2 (2008) 201–208.CrossRefGoogle Scholar
  6. [6]
    S. Novotny and P. Hein, Hydroforming of sheet metal pairs from aluminum alloys, J. Mater. Process. Tech., 115 (2001) 65–69.CrossRefGoogle Scholar
  7. [7]
    S. H. Zhang and J. Danckert, Development of hydromechanical deep drawing, J. Mater. Process. Tech., 83 (1998) 14–25.CrossRefGoogle Scholar
  8. [8]
    T. Nakagawa, K. Nakagawa and H. Amino, Various applications of hydraulic counter pressure deep drawing, J. Mater. Process. Tech., 71 (1997) 160–167.CrossRefGoogle Scholar
  9. [9]
    E. Onder and A. E. Tekkaya, Numerical simulation of various cross sectional workpieces sing conventional deep drawing and hydroforming technologies, Int. J. Mach. Tool. Manu., 48 (2008) 532–542.CrossRefGoogle Scholar
  10. [10]
    S. G. Desai and P. P. Date, On the quantification of strain distribution in drawn sheet metal products, J. Mater. Process. Tech., 177 (2006) 439–443.CrossRefGoogle Scholar
  11. [11]
    D. Y. Yang, J. B. Kim and D. W. Lee, Investigation into manufacturing of very long cups by hydromechanical deep drawing and ironing with controlled radial pressure, CIRP Annals, 44 (1995) 255–258.CrossRefGoogle Scholar
  12. [12]
    M. Sasawat and K. Muammer, Fabrication of microchannel arrays on thin metallic sheet using internal fluid pressure: Investigations on size effects and development of design guidelines, J. Power Sources, 175 (2008) 363–371.CrossRefGoogle Scholar
  13. [13]
    M. H. Hojjati, M. Zoorabadia and S. J. Hosseinipour, Optimization of superplastic hydroforming process of aluminium alloy 5083, J. Mater. Process. Tech., 205 (2008) 482–488.CrossRefGoogle Scholar
  14. [14]
    T. J. Kim, D. Y. Yang and S. S. Han, Numerical modeling of the multi-stage sheet pair hydro forming process, J. Mater. Process. Tech., 151 (2004) 48–53.CrossRefGoogle Scholar
  15. [15]
    H. Z. Shi, X. Z. Li, T. W. Zhong and X. Yi, Technology of sheet hydroforming with a movable female die, Int. J. Mach. Tool. Manuf., 43 (2003) 781–785.CrossRefGoogle Scholar
  16. [16]
    K. P. Rao and J. J. Wei, Performance of a new dry lubricant in the forming of aluminum alloy sheets, Wear, 249 (2001) 86–93.CrossRefGoogle Scholar
  17. [17]
    B. H. Lee, Y. T. Keum and R. H. Wagoner, Modeling of the friction caused by lubrication and surface roughness in sheet metal forming, J. Mater. Process. Tech., 130–131 (2002) 60–63.CrossRefGoogle Scholar
  18. [18]
    R. Shivpuri and W. Zhang, Robust design of spatially distributed friction for reduced wrinkling and thinning failure in sheet drawing, Mater. Design, 30 (2009) 2043–2055.CrossRefGoogle Scholar
  19. [19]
    B. J. Kim, K. H. Choi, K. S. Park, C. J. Van Tyne and Y. H. Moon, Effect of surface defects on hydroformability of aluminum alloys, Key Eng. Mat., 340–341 (2007) 587–592.CrossRefGoogle Scholar
  20. [20]
    B. S. Kang, B. M. Son and J. Kim, A comparative study of stamping and hydroforming processes for an automobile fuel tank using FEM, Int. J. Mach. Tool. Manu., 44 (2004) 87–94.CrossRefGoogle Scholar
  21. [21]
    Y. S. Shin, H. Y. Kim, B. H. Jeon and S. I. Oh, Prototype tryout and die design for automotive parts using welded blank hydroforming, J. Mater. Process. Tech., 130–131 (2002) 121–127.CrossRefGoogle Scholar
  22. [22]
    O. Kreis and P. Hein, Manufacturing system for the integrated hydroforming, trimming and welding of sheet metal pairs, J. Mater. Process. Tech., 115 (2001) 49–54.CrossRefGoogle Scholar
  23. [23]
    M. Geiger, M. Vahl, S. Novotny and S. Bobbert, Process strategies for sheet metal hydroforming of lightweight components, P. I. Mech. Eng., 215/B (2001) 967–976.Google Scholar
  24. [24]
    W. Liu, G. Liu, X. Cui, Y. Xu and S. Yuan, Formability influenced by process loading path of double sheet hydro-forming, T. NonFerr. Met. Soc., 21 (2011) 465–469.CrossRefGoogle Scholar
  25. [25]
    G. Peter and E. Metin, Process control at the sealing line during sheet metal hydroforming, Prod. Eng. Res. Dev., 2 (2008) 3–8.CrossRefGoogle Scholar
  26. [26]
    H. S. Halkaci, M. Turkoz and M. Dilmec, Enhancing form-ability in hydromechanical deep drawing process adding a shallow drawbead to the blank holder, J. Mater. Process. Tech., 214 (2014) 1638–1646.CrossRefGoogle Scholar
  27. [27]
    A. H. Elkholy and O. M. Al-Hawaj, Collapse pressure and strength analysis of hydroformed circular plates, Int. J. Adv. Manuf. Technol., 18 (2001) 79–88.CrossRefGoogle Scholar
  28. [28]
    M. A. Karkoub, Prediction of hydroforming characteristics using random neural networks, J. Intel. Manuf., 17 (2006) 321–330.CrossRefGoogle Scholar
  29. [29]
    A. Ahmad and R. E. Mohammad, Pressure estimation in the hydroforming process of sheet metal pairs with the method of upper bound analysis, J. Mater. Process. Tech., 209 (2009) 2270–2276.CrossRefGoogle Scholar
  30. [30]
    D. A. Oliveira, M. J. Worswick, M. Finn and D. Newman, Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model, J. Mater. Process. Tech., 170 (2005) 350–362.CrossRefGoogle Scholar
  31. [31]
    A. Nader, P. Farhang and C. John, Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models, Int. J. Plasticity, 23 (2007) 841–875.CrossRefGoogle Scholar
  32. [32]
    B. Modi and D. R. Kumar, Development of a hydroforming set up for deep drawing of square cups with variable blank holding force technique, Int. J. Adv. Manuf. Technol., 66 (2013) 1159–1169.CrossRefGoogle Scholar
  33. [33]
    D. C. Chen and C. F. Chen, Use of taguchi method to develop a robust design for the shape rolling of porous sectioned sheet, J. Mater. Process. Tech., 177 (2006) 104–108.CrossRefGoogle Scholar
  34. [34]
    M. J. Davidson and K. Balasubramanian, Experimental investigation on flow-forming of AA6061 alloy-A Taguchi approach, J. Mater. Process. Tech., 200 (2008) 283–287.CrossRefGoogle Scholar
  35. [35]
    A. K. Sharma and D. K. Rout, Finite element analysis of sheet hydromechanical forming of circular cup, J. Mater. Process. Tech., 209 (2009) 1445–1453.CrossRefGoogle Scholar
  36. [36]
    B. Modi and D. R. Kumar, Effect of friction and lubrication on formability of AA5182 alloy in hydroforming of square cups, Mater. Sci. Forum, 762 (2013) 621–626.CrossRefGoogle Scholar
  37. [37]
    R. Padmanabhan, M. C. Oliveira, J. L. Alves and L. F. Menezes, Influence of process parameters on the deep drawing of stainless steel, Finite Elem. Anal. Des., 43 (2007) 1062–1067.CrossRefGoogle Scholar
  38. [38]
    F. Barlat and J. I. Lian, Plastic behavior and stretchability of sheet metals. Part-I: A yield function for orthotropic sheets under plane stress conditions, Int. J. Plasticity, 5 (1989) 51–56.CrossRefGoogle Scholar
  39. [39]
    K. P. Rao and C. L. Xie, A comparative study on the performance of boric acid with several conventional lubricants in metal forming processes, Tribol. Int., 39 (2006) 663–668.CrossRefGoogle Scholar
  40. [40]
    M. Javadi and M. Tajdari, Experimental investigation of the friction coefficient between aluminum and steel, Mater. Sci., 24 (2006) 305–310.Google Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyDelhiIndia

Personalised recommendations