Journal of Mechanical Science and Technology

, Volume 33, Issue 4, pp 1981–1986 | Cite as

Temperature dependency of the fill factor in PV modules between 6 and 40 °C

  • Hongwei QuEmail author
  • Xingcan Li


The definition of the fill factor (FF) and a more accurate formula were used to study the temperature dependency of FF. To investigate FF changes as a function of the temperature in the photovoltaic (PV) modules, we used an equivalent circuit diagram that considers series and parallel resistances. Using a measurement setup that allows precise temperature control of the PV modules, the parameters Voc, Isc, Vm, Im were measured between 6 and 40 °C. Using the theoretical model, a formula for the FF temperature gradient, ∂FF/∂t, could be found. The experimental results show that FF decreases with increasing temperature, and fitting the obtained data points results in a straight line. The FF has a negative temperature coefficient. Specifically, the obtained “defined value” for ∂FF/∂t is −0.00093 1/°C, while the theoretical value is −0.0015 1/°C.


PV modules Fill factor Temperature gradient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Singh and N. M. Ravindra, Temperature dependence of solar cell performance—an analysis, Sol. Energ. Mat. Sol. C., 101 (2012) 36–45.CrossRefGoogle Scholar
  2. [2]
    J. M. Liu, The Principle of Solar Energy Utilization, Technology, Engineering, Beijing: Publishing House of Electronics Industry (2010) 168–173.Google Scholar
  3. [3]
    X. J. Peng, L. Xu, F. Liu, Z. Guo, L. F. Du and X. X. Xu, Study the effects of spectrum and solar cell parameter on fill factor, ACTA. Energiae. Solaris. Sinica., 30(7) (2009) 878–882.Google Scholar
  4. [4]
    S. Chandera, A. Purohita, A. Sharmab, Arvindc, S. P. Nehrad and M. S. Dhakaa, A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature, Energy Reports, 1 (2015) 104–109.CrossRefGoogle Scholar
  5. [5]
    W. He, A. J. Guo, F. Y. Meng and M. Feng, Effect of temperature on performance parameters of multicrystalline silicon solar cells and modules, ACTA. Energiae. Solaris. Sinica., 31(4) (2010) 454–457.Google Scholar
  6. [6]
    M. Tawfik, X. Tonnellier and C. Sansom, Light source selection for a solar simulator for thermal applications: A review, Renew. Sust. Energ. Rev., 90 (2018) 802–813.CrossRefGoogle Scholar
  7. [7]
    A. Gallo, A. Marzo and E. Fuentealba, High flux solar simulators for concentrated solar thermal research: A review, Renew. Sust. Energ. Rev., 77 (2017) 1385–1402.CrossRefGoogle Scholar
  8. [8]
    Z. M. Xu, H. L. Chang, B. B. Wang, J. T. Wang and Q. Zhao, Characteristics of calcium carbonate fouling on heat transfer surfaces under the action of electric fields, J. Mech. Sci. Technol., 32(7) (2018) 3445–3451.CrossRefGoogle Scholar
  9. [9]
    H. Q. Zhang, Testing and Calculate Method Study on Thermal Performance and Flow Pressure Drop Characteristics of a Plate Heat Exchanger, Harbin: Harbin Institute of Technology (2006).Google Scholar
  10. [10]
    W. Zhou, H. X. Yang and Z. H. Fang, A novel model for photovoltaic array performance prediction, Appl. Energ., 84(12) (2007) 1187–1198.CrossRefGoogle Scholar
  11. [11]
    M. A. Mosalam. Shaltout, M. M. El-Nicklawy, A. F. Hassan, U. A. Rahoma and M. Sabry, The temperature dependence of the spectral and efficiency behavior of Si solar cell under low concentrated solar radiation, Renew. Energ., 21(3) (2000) 445–458.CrossRefGoogle Scholar
  12. [12]
    M. K. El-Adawi and I. A. Al-Nuaim, The temperature functional dependence of VOC for a solar cell in relation to its efficiency new approach, Desalination, 209(1) (2007) 91–96.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Shool of Energy and Power EngineeringNortheast Electric Power UniversityJilinChina

Personalised recommendations