Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 4, pp 1915–1923 | Cite as

A study on thermal fluid flow of magnetron cooling for microwave oven

  • Dong Ho Park
  • Eung Ryeol SeoEmail author
  • Myoung Keun Kwon
  • Chang Seon Lee
Article
  • 27 Downloads

Abstract

A numerical study has been conducted on thermal dissipation fin shape of the magnetron of a microwave oven. The main focus of the study was on reducing the bypass away from cooling air around cooling fins and enhancing the heat transfer around cylindrical anode body with numerical investigation on louver, slit, dimple and bending shape. To optimize the location and the shape of the elliptical dimple, RSM(DOE) was adopted to enhance the thermal dissipation from the cylindrical anode of magnetron. The flow separation around the anode was delayed due to optimized dimple numerically and verified by experimental study. The enhancement of the fin cooling was utilized for cost reduction of the cooling fin by reducing the thickness of the fin from 0.6 mm to 0.5 mm, resulting in weight saving by 16.7 %.

Keywords

Ellipse dimple fin Numerical analysis Heat transfer Magnetron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. A. Sattorov, A. Bera, A. Sharma, W. J. Kang, O. J. Kwon, S. S. Jung, D. H. Kim, K. W. Lee, J. H. Won, C. H. Kook and G. S. Park, Thermal analysis of a strapped magnetron, IEEE Transactions on Electron Devices, 58 (8) (2011) 2784–2788.CrossRefGoogle Scholar
  2. [2]
    H. K. Dwivedi and D. S. Venkateswarlu, Thermal design considerations for fast warm-up cathodes in MM wave magnetrons, IEEE Transactions on Electron Devices, 43 (11) (1996) 2011–2018.CrossRefGoogle Scholar
  3. [3]
    P. V. Siva Rao, P. Srikrishna, N. K. Sharma and S. Subra-manian, Thermal analysis of magnetron injection gun, IEEE International Vacuum Electronics Conference (2009) 491–492.Google Scholar
  4. [4]
    K. S. Bhat, K. Sreedevi and M. Ravi, Thermal analysis of electron gun for travelling wave tubes, Applied Surface Science, 253 (2) (2006) 679–682.CrossRefGoogle Scholar
  5. [5]
    R. Crivello and R. W. Grow, Thermal analysis of PPM-focused rod-supported TWT helix structures, IEEE Transactions on Electron Devices, 35 (10) (1988) 1701–1720.CrossRefGoogle Scholar
  6. [6]
    W. Jiang, J. Wang, Y. Luo, L. Xu, X. Yao and S. Wang, Thermal analysis of sheet beam gun for the sheet beam traveling wave tube, IEEE Transactions on Electron Devices, 63 (3) (2016) 1312–1316.CrossRefGoogle Scholar
  7. [7]
    V. Gahlaut, R. K. Sharma and V. Srivastava, Thermal and structural analysis of electron gun for high efficiency space TWT, International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (2009) 409–412.CrossRefGoogle Scholar
  8. [8]
    X. Li, X. Shang, X. Su, W. Liu, L. Xiao and S. Yu, Thermal design of high efficiency, high reliability pulsed space TWT’s grid-controlled electron gun, IEEE Transactions on Electron Devices, 62 (5) (2015) 1648–1654.CrossRefGoogle Scholar
  9. [9]
    R. Sawicki, Analytical determination of the thermal/mechanical performance of traveling wave tube electron guns, Electron Devices Meeting, 24 (1978) 160–163.Google Scholar
  10. [10]
    Y. Han, Y. Liu, Y. Ding, P. Liu and C. Lu, Thermal analysis of a helix TWT slow-wave structure, IEEE Transactions on Electron Devices, 55 (5) (2008) 1269–1272.CrossRefGoogle Scholar
  11. [11]
    D. S. Venkateswarlu and A. Sil, Imperfect boundaries: thermal response of the cathode surface of a potted heater-cathode assembly, Applied Surface Science, 52 (1) (1991) 7–17.CrossRefGoogle Scholar
  12. [12]
    J. Gong, C. Min, C. Qi, E. Wang and L. Tian, Numerical simulation of flow and heat transfer characteristics in wavy fin-and-tube heat exchanger with combined longitudinal vortex generators, Int. Comm. Heat Mass Transfer, 43 (2013) 53–56.CrossRefGoogle Scholar
  13. [13]
    J. Y. Jang and J. Y. Yang, Experimental and 3-D numerical analysis of the thermal-hydraulic characteristics of elliptic finned-tubes heat exchangers, Heat Transfer Engineering, 19 (4) (1998) 55–67.CrossRefGoogle Scholar
  14. [14]
    F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th Ed., Wiley, New York, USA (2002).Google Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Dong Ho Park
    • 1
  • Eung Ryeol Seo
    • 1
    Email author
  • Myoung Keun Kwon
    • 1
  • Chang Seon Lee
    • 1
  1. 1.Digital Appliance Advanced R&D TeamSamsung ElectronicsGyeonggi-doKorea

Personalised recommendations