Journal of Mechanical Science and Technology

, Volume 33, Issue 4, pp 1563–1572 | Cite as

Optimal control of vibration by multiple tuned liquid dampers using Taguchi method

  • Nguyen Van KhangEmail author
  • Do The Duong
  • Nguyen Thi Van Huong
  • Nguyen Duc Thi Thu Dinh
  • Vu Duc Phuc


This paper investigates the multiple tuned liquid dampers (MTLD), which consist of a number of MTLD whose first natural frequencies of sloshing are distributed over a certain range around the natural frequency of a structure. The liquid motion in the MTLD as well as the MTLD-structure interaction are numerically simulated using a shallow water-wave theory. An optimal procedure based on Taguchi method is proposed to determine the optimum parameters of MTLD to suppress the vibration amplitude of the considered structure. A number of numerical tests are included to demonstrate and verify the effectiveness of the proposed procedure.


Multiple tuned liquid damper Taguchi method Passive vibration control Numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. M. Sun, Y. Fujino, B. M Pacheco and P. Chaiseri, Modelling of tuned liquid damper (TLD), Journal of Wind Engineering and Industrial Aerodynamics, 41–44 (1992) 1883–1894.CrossRefGoogle Scholar
  2. [2]
    Y. Fujino, L. M. Sun, B. M. Pachenco and P. Chaiseri, Tuned liquid damper (TLD) for suppressing horizontal motion of structures, ASCE Journal of Engineering Mechanics, 118(10) (1992) 2017–2030.CrossRefGoogle Scholar
  3. [3]
    Y. Fujino and L. M. Sun, Vibration control by multiple tuned liquid dampers (MTLDs), Journal of Structural Engineering, 119(12) (1993) 3482–3502.CrossRefGoogle Scholar
  4. [4]
    L. M. Sun, Y. Fujino, P. Chaiseri and B. M. Pacheco, The properties of tuned liquid dampers using a TMD analogy, Earthquake Engineering and Structural Dynamics, 24 (1995) 967–976.CrossRefGoogle Scholar
  5. [5]
    Y.-M. Kim and K.-P. You, Use of TLD and MTLD for control of wind-induced vibration of tall buildings, Journal of Mechanical Science and Technology, 20(9) (2006) 1346–1354.CrossRefGoogle Scholar
  6. [6]
    G. Taguchi, S. Chowdhury and Y. Wu, Taguchi’s Quality Engineering Handbook, John Wiley & Sons, New Jersey (2005).zbMATHGoogle Scholar
  7. [7]
    R. K. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers, USA (2010).Google Scholar
  8. [8]
    B. Klein, Versuchsplanung-DOE, Einfuhrung in die Taguchi/Shainin-Methodik (4. Auflage), Oldenbourg Verlag, München (2011).CrossRefGoogle Scholar
  9. [9]
    C. Zang, M. I. Friswell and J. E. Mottershead, A review of robust optimal design and application in dynamics, Computer & Structures, 83 (2005) 315–326.CrossRefGoogle Scholar
  10. [10]
    R. A. Zambanini, The application of Taguchi’s method of parameter design to the design of mechanical systems, Master Thesis, Lehigh University (1992).Google Scholar
  11. [11]
    E. Pennestri, An application of Chebyshev’s min — max criterion to the optimal design of a damped dynamic vibration absorber, Journal of Sound and Vibration, 217 (1998) 757–765.CrossRefGoogle Scholar
  12. [12]
    K. Liu and G. Coppola, Optimal design of damped dynamic vibration absorber for damped primary systems, Transactions of the Canadian Society for Mechanical Engineering, 34(1) (2010) 119–135.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Nguyen Van Khang
    • 1
    Email author
  • Do The Duong
    • 1
  • Nguyen Thi Van Huong
    • 1
  • Nguyen Duc Thi Thu Dinh
    • 2
  • Vu Duc Phuc
    • 3
  1. 1.Hanoi University of Science and TechnologyHanoiVietnam
  2. 2.University of Transport and CommunicationsHanoiVietnam
  3. 3.Hung Yen University of Technology and EducationHung YenVietnam

Personalised recommendations