Journal of Mechanical Science and Technology

, Volume 33, Issue 2, pp 967–971 | Cite as

Quantitative measurements of nanoparticle layer thicknesses near the contact line region after droplet drying-out

  • Dong Hwan Shin
  • Dae Yun Kim
  • Chang Kyoung ChoiEmail author
  • Seong Hyuk LeeEmail author


Confocal fringe patterns of evaporating sessile drops have provided initial evidence of the presence of a sub-micron thin liquid film emanating from an evaporating sessile droplet. The droplets studied were seeded with 50 nm aluminum oxide particles. Natural evaporation occurs on the substrates that are varied in wettability with static apparent contact angles as θ = 20º, 33º, 85º and 105º for a DI-water. Subsequent SEM, EDX and AFM characterization demonstrates the existence of aluminum oxide nanoparticle deposition in the submicron region. The profile of stuck nanoparticles shows nanometer-scaled height that is comparative in thickness to a transition film. Moreover, the radial extent of the deposition is consistent around the periphery of the original droplet and is found to be dependent upon the surface wettability. This study shows experimentally that the relative length of nanoparticle deposition increases with the surface wettability.


Droplet evaporation Nanoparticle deposition Surface wettability Transition film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. H. Shin, S. H. Lee, J. Y. Jung and J. Y. Yoo, Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces, Microelectron Eng., 86 (2009) 1350–1353.CrossRefGoogle Scholar
  2. [2]
    J. H. Kim, S. I. Ahn, J. H. Kim and W. C. Zin, Evaporation of water droplets on polymer surfaces, Langmuir, 23 (2007) 6163–6169.CrossRefGoogle Scholar
  3. [3]
    D. H. Shin, C. K. Choi, Y. T. Kang and S. H. Lee, Local aggregation characteristics of nanofluid droplet during evaporation, Int. J. Heat Mass Transfer, 72 (2014) 336–344.CrossRefGoogle Scholar
  4. [4]
    S. C. Maroo and J. N. Chung, Heat transfer characteristics and pressure variation in a nanoscale evaporating meniscus, Int. J. Heat Mass Transfer, 53 (2010) 3335–3345.CrossRefGoogle Scholar
  5. [5]
    J. N. Chung, T. Chen and S. C. Maroo, A review of recent progress on nano/micro scale nucleate boiling fundamentals, Front. Heat Mass Transfer, 2 (2011) 023004.CrossRefGoogle Scholar
  6. [6]
    P. Yi, D. Poulikakos, J. Walther and G. Yadigaroglu, Molecular dynamics simulation of vaporization of an ultra–thin liquid argon layer on a surface, Int. J. Heat Mass Transfer, 45 (2002) 2087–2100.CrossRefGoogle Scholar
  7. [7]
    A. Chatterjee, J. L. Plawsky and P. C. Wayner, Disjoining pressure and capillarity in the constrained vapor bubble heat transfer system, Adv. Colloid Interface Sci., 168 (2011) 40–49.CrossRefGoogle Scholar
  8. [8]
    J. L. Plawsky, M. Ojha, A. Chatterjee and P. C. Wayner, Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line, Chem. Eng. Commun., 196 (2008) 658–696.CrossRefGoogle Scholar
  9. [9]
    S. S. Panchamgam, J. L. Plawsky and P. C. Wayner, Spreading characteristics and microscale evaporative heat transfer in an ultrathin film containing a binary mixture, J. Heat Transfer, 128 (2006) 1266–1275.CrossRefGoogle Scholar
  10. [10]
    S. C. Maroo and J. N. Chung, Nanoscale liquid–vapor phase–change physics in nonevaporating region at the threephase contact line, J. Appl. Phys., 106 (2009) 064911.CrossRefGoogle Scholar
  11. [11]
    S. C. Maroo and J. N. Chung, Molecular dynamic simulation of platinum heater and associated nanoscale liquid argon film evaporation and colloidal adsorption characteristics, J. Colloid Interface Sci., 328 (2008) 134–146.CrossRefGoogle Scholar
  12. [12]
    V. P. Carey, Liquid–vapor Phase–change Phenomena, 2nd edition, Taylor and Francis, New York, USA (2008).Google Scholar
  13. [13]
    D. H. Shin, J. S. Allen, C. K. Choi and S. H. Lee, Visualization of an evaporating thin layer during the evaporation of a nanofluid droplet, Langmuir, 31 (2015) 1237–1241.CrossRefGoogle Scholar
  14. [14]
    A. H. Liu, P. C. Wayner and J. L. Plawsky, Image scanning ellipsometry for measuring nonuniform film thickness profiles, Appl. Opt., 33 (1994) 1223–1229.CrossRefGoogle Scholar
  15. [15]
    R. Barer, Refractometry and interferometry of living cells, J. Opt. Soc. Am., 47 (1957) 545–556.CrossRefGoogle Scholar
  16. [16]
    L. V. Govor, G. Reiter, J. Parisi and G. H. Bauer, Selfassembled nanoparticle deposits formed at the contact line of evaporating micrometer–size droplets, Phy. Rev. E., 69 (2004) 061609.CrossRefGoogle Scholar
  17. [17]
    J. Parisi, L. V. Govor, G. H. Bauer and G. Reiter, Selfassembly of nanoparticle ring patterns, Z. Naturforsch., 61a (2006) 99–102.Google Scholar
  18. [18]
    Y. O. Popov, Evaporative deposition patterns: Spatial dimensions of the deposit, Phys. Rev. E., 71 (2005) 036313.CrossRefGoogle Scholar
  19. [19]
    H. Hu and R. G. Larson, Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B., 106 (2002) 1334–1344.CrossRefGoogle Scholar
  20. [20]
    J. M. Stauber, S. K. Wilson and B. R. Duffy, Evaporation of droplets on strongly hydrophobic substrates, Langmuir, 31 (2015) 3653–3660.CrossRefGoogle Scholar
  21. [21]
    Wikipedia, Piranha Solution,, Accessed: 17th, April (2016).Google Scholar
  22. [22]
    E. Yu, S.–C. Kim, H. J. Lee, K. H. Oh and M.–W. Moon, Extreme wettability of nanostructured glass fabricated by non–lithographic, anisotropic etching, Sci. Rep., 5 (2015) 9362.CrossRefGoogle Scholar
  23. [23]
    L. Zheng, Y.–X. Wang, J. L. Plawsky and P. C. Wayner, Accuracy of measurements of curvature and apparent contact angle in a constrained vapor bubble heat exchanger, Int. J. Heat Mass Transfer, 45 (2002) 2021–2030.CrossRefGoogle Scholar
  24. [24]
    Bruker. Corporation, Dimension Icon Brochure,–PDF–Docs/Surface Analysis/AFM/Brochures/B068–RevB2–Dimension_Icon–Brochure. pdf, Accessed: 17th, April (2016).Google Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Department of Energy Conversion SystemsKorea Institute of Machinery and MaterialsDaejeonKorea
  2. 2.School of Mechanical EngineeringChung-Ang UniversitySeoulKorea
  3. 3.Mechanical Engineering-Engineering MechanicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations