Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 12, pp 5999–6007 | Cite as

Characterization of atmospheric electrodeless microwave plasma in nitrogen

  • Hojoong Sun
  • Jungwun Lee
  • Moon Soo BakEmail author
Article
  • 25 Downloads

Abstract

In this study, we investigate atmospheric microwave plasmas produced without electrodes while having a larger plasma volume in pure nitrogen. Optical emission spectroscopy is conducted to measure the translational, rotational, and vibrational temperatures of the plasma. Subsequently, three-temperature plasma kinetic simulations that consider the trans-rotational, vibrational, and electron temperatures separately are developed and conducted to study reaction pathways that sustain the plasma. The translational, rotational, and vibrational temperatures of the plasma are found to be the same and reach approximately 6000 K independent of the flow rate. In the plasma region, the molecular nitrogen is found to be dissociated into atoms to a significant extent because of the high gas temperature, and the plasma is sustained via associative ionizations rather than the electron-impact ionizations.

Keywords

Thermal plasma Microwave plasma Atmospheric pressure Nitrogen Optical emission spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. R. Ravishankara, S. Solomon, A. A. Turnipseed and R. F. Warren, Atmospheric lifetimes of long–lived halogenated Species, Science, 259 (5092) (1993) 194–199.CrossRefGoogle Scholar
  2. [2]
    J. Heberlein and A. B. Murphy, Thermal plasma waste treatment, J. Phys. D. Appl. Phys., 41 (5) (2008).Google Scholar
  3. [3]
    E. Gomez, D. A. Rani, C. R. Cheeseman, D. Deegan, M. Wise and A. R. Boccaccini, Thermal plasma technology for the treatment of wastes: A critical review, J. Hazard. Mater., 161 (2–3) (2009) 614–626.CrossRefGoogle Scholar
  4. [4]
    W. T. Tsai, H.P. Chen and W. Y. Hsien, A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes, J. Loss Prev. Process Ind., 15 (2) (2002) 65–75.CrossRefGoogle Scholar
  5. [5]
    T. Gierczak, R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy and A. R. Ravishankara, Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes: 1. Rate coefficients for reactions with OH, J. Geophys. Res., 96. D3 (1991) 5001–5011.Google Scholar
  6. [6]
    J. J. Orlando, J. B. Burkholder, S. A. McKeen and A. R. Ravishankara, Atmospheric fate of several hydrofluoroethanes and hydrochloroethanes: 2. UV absorption cross sections and atmospheric lifetimes, J. Geophys. Res., 96 (D3) (1991) 5013–5023.Google Scholar
  7. [7]
    D. T. Chen, M. M. David, G. V. D. Tiers and J. N. Schroepfer, A carbon arc process for treatment of CF4 Emissions, Environ. Sci. Technol., 32 (20) (1998) 3237–3240.CrossRefGoogle Scholar
  8. [8]
    C. M. Du, J. H. Yan and B. Cheron, Decomposition of toluene in a gliding arc discharge plasma reactor, Plasma Sources Sci. Technol., 16 (4) (2007) 791–797.CrossRefGoogle Scholar
  9. [9]
    H. S. Uhm, Y. C. Hong and D. H. Shin, A microwave plasma torch and its applications, Plasma Sources Sci. Technol., 15 (2) (2006) S26–S34.Google Scholar
  10. [10]
    H. Sun, J. Lee, H. Do, S. Im and M. S. Bak, Experimental and numerical studies on carbon dioxide decomposition in atmospheric electrodeless microwave plasmas J. Appl. Phys., 122 (2017) 033303.CrossRefGoogle Scholar
  11. [11]
    S. M. Chun, Y. C. Hong and D. H. Choi, Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure, J. CO2 Util., 19 (2017) 221–229.CrossRefGoogle Scholar
  12. [12]
    X. Tao, M. Bai, X. Li, H. Long, S. Shang, Y. Yin and X. Dai, CH4–CO2 reforming by plasma–Challenges and opportunities, Prog. Energy Combust. Sci., 37 (2) (2011) 113–124.CrossRefGoogle Scholar
  13. [13]
    H. S. Uhm, Y. H. Na, Y. C. Hong, D. H. Shin, C. H. Cho and Y. K. Park, High–efficiency gasification of low–grade coal by microwave steam plasma, Energy and Fuels, 28 (7) (2014) 4402–4408.CrossRefGoogle Scholar
  14. [14]
    M. Jasiński, M. Dors, H. Nowakowska, G. V. Nichipor and J. Mizeraczyk, Production of hydrogen via conversion of hydrocarbons using a microwave plasma, J. Phys. D. Appl. Phys., 44 (19) (2011) 194002.CrossRefGoogle Scholar
  15. [15]
    Y. F. Wang, Y. S. You, C. H. Tsai and L. C. Wang, Production of hydrogen by plasma–reforming of methanol, Int. J. Hydrogen Energy, 35 (18) (2010) 9637–9640.CrossRefGoogle Scholar
  16. [16]
    Y. C. Hong, J. H. Kim and H. S. Uhm, Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma torch, Phys. Plasmas, 11 (2) (2004) 830–835.CrossRefGoogle Scholar
  17. [17]
    Y. C. Hong, H. S. Uhm, H. S. Kim, M. J. Kim, S. H. Han, S. C. Ko and S. K. Park, Decomposition of phosgene by microwave plasma–torch generated at atmospheric pressure, IEEE Trans. Plasma Sci., 33 (2) (2005) 958–963.CrossRefGoogle Scholar
  18. [18]
    M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, T. Ohkubo and J. S. Chang, CFC–11 destruction by microwave torch generated atmospheric–pressure nitrogen discharge, J. Phys. D. Appl. Phys., 35 (18) (2002) 2274–2280.CrossRefGoogle Scholar
  19. [19]
    J. Mizeraczyk, M. Jasiński and Z. Zakrzewski, Hazardous gas treatment using atmospheric pressure microwave discharges, Plasma Phys. Control. Fusion, 47 (12 B) (2005).CrossRefGoogle Scholar
  20. [20]
    Y. Ko, G. Yang, D. P. Y. Chang and I. M. Kennedy, Microwave plasma conversion of volatile organic compounds, J. Air Waste Manage. Assoc., 53 (5) (2003) 580–585.CrossRefGoogle Scholar
  21. [21]
    Y. C. Hong and H. S. Uhm, Abatement of CF4 by atmospheric–pressure microwave plasma torch, Phys. Plasmas, 10 (8) (2003) 3410–3414.CrossRefGoogle Scholar
  22. [22]
    H. Kurihara and T. Yajima, Decomposition of toluene by atmospheric pressure microwave plasma generated using metal salt–impregnated carbon felt pieces, Chem. Lett., 36 (4) (2007) 526–527.CrossRefGoogle Scholar
  23. [23]
    M. Leins, L. Alberts, M. Kaiser, M. Walker, A. Schulz, U. Schumacher and U. Stroth, Development and characterisation of a microwave–heated atmospheric plasma torch, Plasma Process. Polym., 6 (S1) (2009) S227–S232.Google Scholar
  24. [24]
    P. Jamróz, W. Kordylewski and M. Wnukowski, Microwave plasma application in decomposition and steam reforming of model tar compounds, Fuel Process. Technol., 169 (2018) 1–14.CrossRefGoogle Scholar
  25. [25]
    B. A. Wofford, M. W. Jackson, C. Hartz and J. W. Bevan, Surface wave plasma abatement of CHF3 and CF4 containing semiconductor process emissions, Environ. Sci. Technol., 33 (11) (1999) 1892–1897.CrossRefGoogle Scholar
  26. [26]
    J. Lee, H. Sun and M. S. Bak, Formation of nitrogen oxides from atmospheric electrodeless microwave plasmas in nitrogen–oxygen mixtures, J. Appl. Phys., 122 (8) (2017) 083303.CrossRefGoogle Scholar
  27. [27]
    H. Sun, J. Lee, S. Im and M. S. Bak, Optical emission spectroscopic studies on atmospheric electrodeless microwave plasma in carbon dioxide–hydrogen mixture, IEEE Trans. Plasma Sci., 45 (12) (2017) 3154–3159.CrossRefGoogle Scholar
  28. [28]
    J. Torres, J. M. Palomares, A. Sola, J. J. A. M. Van der Mullen and A. Gamero, A Stark broadening method to determine simultaneously the electron temperature and density in high–pressure microwave plasmas, J. Phys. D. Appl. Phys., 40 (19) (2007) 5929–5936.CrossRefGoogle Scholar
  29. [29]
    D. Andrienko, Non–equilibrium models for high temperature gas flows, Ph.D. Thesis, Wright State University (2014).Google Scholar
  30. [30]
    E. V. Kustova and E. A. Nagnibeda, Kinetic model for multi–temperature flows of reacting carbon dioxide mixture, Chem. Phys., 398 (1) (2012) 111–117.CrossRefGoogle Scholar
  31. [31]
    R. L. Macdonald, A. Munafò, C. O. Johnston and M. Panesi, Nonequilibrium radiation and dissociation of CO molecules in shock–heated flows, Phys. Rev. Fluids, 1 (4) (2016) 043401.CrossRefGoogle Scholar
  32. [32]
    C. Park, Review of chemical–kinetic problems of future NASA missions. I–Earth entries, J. Thermophys. Heat Transf., 7 (3) (1993) 385–398.CrossRefGoogle Scholar
  33. [33]
    G. J. M. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14 (4) (2005) 722–733.CrossRefGoogle Scholar
  34. [34]
    Phelps database, www.lxcat.net, September 29 (2016).Google Scholar
  35. [35]
    Morgan database, www.lxcat.net, September 29 (2016).Google Scholar
  36. [36]
    Free program distributed by NASA, www.grc.nasa.gov/WWW/CEAWeb/ceaThermoBuild/htm.Google Scholar
  37. [37]
    R. N. Gupta, J. M. Yos and R. A. Thompson, A review of reaction rates and thermodynamic and transport properties for an 11–species air model for chemical and thermal nonequilibrium calculations to 30000 K, Nasa Tech. Memo. (1990).Google Scholar
  38. [38]
    M. Capitelli, C. M. Ferreira, B. F. Gordiets and A. I. Osipov, Plasma kinetics in atmospheric gases, Springer, Berlin (2000).CrossRefGoogle Scholar
  39. [39]
    A. Lifshitz, Correlation of vibrational de–excitation rate constants (k0←1) of diatomic molecules, J. Chem. Phys., 61 (6) (1974) 2478–2479.CrossRefGoogle Scholar
  40. [40]
    A. Fridman, Plasma chemistry, Cambridge University Press, Cambridge (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSungkyunkwan UniversitySuwon, Gyeonggi-doKorea

Personalised recommendations