Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 12, pp 5875–5888 | Cite as

A novel inverse modeling control for piezo positioning stage

  • To Xuan Dinh
  • Nguyen Phi Luan
  • Kyoung Kwan AhnEmail author
Article
  • 20 Downloads

Abstract

This paper focuses on the application of a novel inverse nonlinear autoregressive with exogenous input (NARX) structure and a fuzzy inference system on position control of a piezo positioning stage (PPS) system. The highly relationship between input voltage and output displacement is thoroughly modeled by using the inverse fuzzy NARX model-based identification process with the experiment training data. The unknown parameters of the proposed NARX fuzzy model was obtained base on a hybridization between backtracking search algorithm and gradient descent technique. A combination between fuzzy propositional–integral–derivative controller and inverse modeling feedforward controller was then applied to control PPS with several challenged working condition. The results show efficiency of the proposed method for the PPS system in terms of high tracking precision and excellent dynamic performance.

Keywords

Piezo positioning stage Backtracking search algorithm Inverse modeling Nonlinear auto regressive exogenous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Croft, G. Shedd and S. Devasia, Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application, Proceedings of the 2000 American Control Conference, ACC (IEEE Cat. No. 00CH36334) (2000).Google Scholar
  2. [2]
    P. J. M. Michael and A. Paesler, Near–field optics: Theory, instrumentation, and applications, John Wiley, Newyork (1996).Google Scholar
  3. [3]
    A. J. Fleming and S. O. R. Moheimani, Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners, IEEE Transactions on Control Systems Technology, 14 (1) (2006) 33–44.CrossRefGoogle Scholar
  4. [4]
    C. J. Lin and S. R. Yang, Precise positioning of piezoactuated stages using hysteresis–observer based control, Mechatronics, 16 (7) (2006) 417–426.CrossRefGoogle Scholar
  5. [5]
    H. J. Shieh and P. K. Huang, Trajectory tracking of piezo–electric positioning stages using a dynamic sliding–mode control, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53 (10) (2006) 1872–1882.CrossRefGoogle Scholar
  6. [6]
    D. Huang, J. X. Xu, V. Venkataramanan and T. C. T. Huynh, High–performance tracking of piezoelectric positioning stage using current–cycle iterative learning control with gain scheduling, IEEE Transactions on Industrial Electronics, 61 (2) (2014) 1085–1098.CrossRefGoogle Scholar
  7. [7]
    R. Xu and M. Zhou, Sliding mode control with sigmoid function for the motion tracking control of the piezoactuated stages, Electronics Letters, 53 (2) (2017) 75–77.CrossRefGoogle Scholar
  8. [8]
    T. X. Dinh and K. K. Ahn, Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage, International Journal of Control, Automation and Systems, 15 (6) (2017) 2892–2905.CrossRefGoogle Scholar
  9. [9]
    T. X. Dinh and K. K. Ahn, Adaptive–gain fast nonsingular terminal sliding mode for position control of a piezo positioning stage, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (2018).Google Scholar
  10. [10]
    J. Lin, H. Chiang and C. C. Lin, Tuning PID control parameters for micro–piezo–stage by using grey relational analysis, Expert Systems with Applications, 38 (11) (2011) 13924–13932.Google Scholar
  11. [11]
    A. Sebastian and S. M. Salapaka, Design methodologies for robust nano–positioning, IEEE Transactions on Control Systems Technology, 13 (6) (2005) 868–876.CrossRefGoogle Scholar
  12. [12]
    C. Chang–Qing and S. Ya–Peng, Optimal control of active structures with piezoelectric modal sensors and actuators, Smart Materials and Structures, 6 (4) (1997) 403.CrossRefGoogle Scholar
  13. [13]
    Y. Wu and Q. Zou, Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators, IEEE Transactions on Control Systems Technology, 15 (5) (2007) 936–944.CrossRefGoogle Scholar
  14. [14]
    J. X. Xu, D. Huang, V. Venkataramanan and T. C. T. Huynh, Extreme precise motion tracking of piezoelectric positioning stage using sampled–data iterative learning control, IEEE Transactions on Control Systems Technology, 21 (4) (2013) 1432–1439.CrossRefGoogle Scholar
  15. [15]
    P. K. Huang, P. H. Shieh, F. J. Lin and H. J. Shieh, Slidingmode control for a two–dimensional piezo–positioning stage, IET Control Theory & Applications, 1 (4) (2007) 1104–1113.CrossRefGoogle Scholar
  16. [16]
    X. Chen and T. Hisayama, Adaptive sliding–mode position control for piezo–actuated stage, IEEE Transactions on Industrial Electronics, 55 (11) (2008) 3927–3934.CrossRefGoogle Scholar
  17. [17]
    F. J. Lin, P. H. Shieh and P. H. Chou, Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network, IEEE Transactions on Fuzzy Systems, 16 (3) (2008) 676–692.CrossRefGoogle Scholar
  18. [18]
    F. J. Lin, S. Y. Lee and P. H. Chou, Intelligent nonsingular terminal sliding–mode control using MIMO elman neural network for piezo–flexural nanopositioning stage, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59 (12) (2012) 2716–2730.CrossRefGoogle Scholar
  19. [19]
    J. Yi, S. Chang and Y. Shen, Disturbance–observer–based hysteresis compensation for piezoelectric actuators, IEEE/ASME Transactions on Mechatronics, 14 (4) (2009) 456–464.CrossRefGoogle Scholar
  20. [20]
    B. N. M. Truong and K. K. Ahn, Inverse modeling and control of a dielectric electro–active polymer smart actuator, Sensors and Actuators A: Physical, 229 (2015) 118–127.CrossRefGoogle Scholar
  21. [21]
    D. N. C. Nam and K. K. Ahn, Identification of an ionic polymer metal composite actuator employing Preisach type fuzzy NARX model and particle swarm optimization, Sensors and Actuators A: Physical, 183 (2012) 105–114.CrossRefGoogle Scholar
  22. [22]
    K. K. Ahn and H. P. H. Anh, Inverse double NARX fuzzy modeling for system identification, IEEE/ASME Transactions on Mechatronics, 15 (1) (2010) 136–148.CrossRefGoogle Scholar
  23. [23]
    B. N. M. Truong, D. N. C. Nam and K. K. Ahn, Hysteresis modeling and identification of a dielectric electro–active polymer actuator using an APSO–based nonlinear Preisach NARX fuzzy model, Smart Materials and Structures, 22 (2013) 095004.CrossRefGoogle Scholar
  24. [24]
    K. K. Ahn and T. D. C. Thanh, Nonlinear PID control to improve the control performance of the pneumatic artificial muscle manipulator using neural network, Journal of Mechanical Science and Technology, 19 (9) (2005) 106–115.CrossRefGoogle Scholar
  25. [25]
    S. Rajendiran and P. Lakshmi, Simulation of PID and fuzzy logic controller for integrated seat suspension of a quarter car with driver model for different road profiles, Journal of Mechanical Science and Technology, 30 (10) (2016) 4565–4570.CrossRefGoogle Scholar
  26. [26]
    A. Şumnu, İ. H. Güzelbey and M. V. Çakir, Simulation and PID control of a Stewart platform with linear motor, Journal of Mechanical Science and Technology, 31 (1) (2017) 345–356.CrossRefGoogle Scholar
  27. [27]
    G. H. Jun and K. K. Ahn, Extended–state–observer–based nonlinear servo control of an electro–hydrostatic actuator, Journal of Drive and Control, 14 (4) (2017) 61–70.Google Scholar
  28. [28]
    T. W. Ha et al., Position control of an electro–hydrostatic rotary actuator using adaptive PID control, Journal of Drive and Control, 14 (4) (2017) 37–44.Google Scholar
  29. [29]
    H. P. H. Anh and K. K. Ahn, Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse NARX fuzzy model, Engineering Applications of Artificial Intelligence, 24 (4) (2011) 697–716.CrossRefGoogle Scholar
  30. [30]
    S. A. Billings, Nonlinear system identification: NARMAX methods in the time, frequency, and spatio–temporal domains, John Wiley & Sons (2013).CrossRefzbMATHGoogle Scholar
  31. [31]
    F. Cheong and R. Lai, Constraining the optimization of a fuzzy logic controller using an enhanced genetic algorithm, Trans. Sys. Man Cyber. Part B, 30 (1) (2000) 31–46.CrossRefGoogle Scholar
  32. [32]
    P. Y. Jun, C. H. Suck and ·C. D. Hyuk, Genetic algorithmbased optimization of fuzzy logic controller using characteristic parameters, IEEE International Conference on Evolutionary Computation (1995).Google Scholar
  33. [33]
    P. Civicioglu, Backtracking search optimization algorithm for numerical optimization problems, Applied Mathematics and Computation, 219 (15) (2013) 8121–8144.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Boerlage, M. Steinbuch, P. Lambrechts and M. V. D. Wal, Model–based feedforward for motion systems, Proceedings of 2003 IEEE Conference on Control Applications (2003).CrossRefGoogle Scholar
  35. [35]
    K. K. Ahn and D. Q. Truong, Online tuning fuzzy PID controller using robust extended Kalman filter, Journal of Process Control, 19 (6) (2009) 1011–1023.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • To Xuan Dinh
    • 1
  • Nguyen Phi Luan
    • 2
  • Kyoung Kwan Ahn
    • 1
    Email author
  1. 1.School of Mechanical and Automotive EngineeringUniversity of UlsanUlsanKorea
  2. 2.T-Robotics Co., Ltd.Gyeonggi-doKorea

Personalised recommendations