Journal of Mechanical Science and Technology

, Volume 32, Issue 12, pp 5845–5853 | Cite as

Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM)

  • Dong Mun Park
  • Jun Hwan Kim
  • Seung Jun Lee
  • Gil Ho Yoon


This research presents molecular dynamics (MD) simulations to characterize the tensile behaviors of aluminum (Al) composites reinforced with carbon nanotubes (CNTs). The positions, alignments and condensations of CNT inside aluminum composites are stochastic in real and they influence the tensile behaviors of the composites. Thus, it is important to quantize the strengths of the CNT-Al composites depending on the configurations of CNTs. For this, the angles of the CNTs are varied inside an aluminum composite to estimate the yield strengths of the composites using MD simulation. Compared with the strength of pure Al composite, the Young’s modulus of an aluminum composite increases about 20 GPa from 71.52 GPa to 92 GPa (Chiral vector (6,6), 0 degrees). However, with inclined carbon nanotubes, the strength is deteriorated due to the interface slip and the necking of Al block. Some deteriorations of yield stress and yield strain are observed due to premature failure of the CNT–Al composite due to local buckling. The present study also finds out that the modified rule of mixture (MROM) can be used to characterize the effect of geometrical characteristics of CNT-Al composite.


Modified rule of mixture (MROM) Carbon nanotubes Metal-matrix composites (MMCs) Modelling/simulations Stress/strain measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. J. Carey, J. T. Tzeng and S. Karna, Carbon nanotube aluminum matrix composites, Army Research Lab Aberdeen Proving Ground Md (2010).Google Scholar
  2. [2]
    H. Choi, J. Shin and D. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites, Composites Part A: Applied Science and Manufacturing, 43 (2012) 1061–1072.CrossRefGoogle Scholar
  3. [3]
    H. Choi, L. Wang, D. Cheon and W. Lee, Preparation by mechanical alloying of Al powders with single–, double–, and multi–walled carbon nanotubes for carbon/metal nanocomposites, Composites Science and Technology, 74 (2013) 91–98.CrossRefGoogle Scholar
  4. [4]
    C. Deng, D. Wang, X. Zhang and A. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Materials Science and Engineering: A, 444 (2007) 138–145.CrossRefGoogle Scholar
  5. [5]
    H. Kurita, H. Kwon, M. Estili and A. Kawasaki, Multiwalled carbon nanotube–aluminum matrix composites prepared by combination of hetero–agglomeration method, spark plasma sintering and hot extrusion, Materials Transactions, 52 (2011) 1960–1965.CrossRefGoogle Scholar
  6. [6]
    H. Kwon and M. Leparoux, Hot extruded carbon nanotube reinforced aluminum matrix composite materials, Nanotechnology, 23 (2012) 415701.CrossRefGoogle Scholar
  7. [7]
    T. Laha, Y. Chen, D. Lahiri and A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Composites Part A: Applied Science and Manufacturing, 40 (2009) 589–594.CrossRefGoogle Scholar
  8. [8]
    W. Lee, S. Jang, M. J. Kim and J.–M. Myoung, Interfacial interactions and dispersion relations in carbon–aluminium nanocomposite systems, Nanotechnology, 19 (2008) 285701.CrossRefGoogle Scholar
  9. [9]
    M. Majid, G. Majzoobi, G. A. Noozad, A. Reihani, S. Mortazavi and M. Gorji, Fabrication and mechanical properties of MWCNTs–reinforced aluminum composites by hot extrusion, Rare Metals, 31 (2012) 372–378.CrossRefGoogle Scholar
  10. [10]
    H.–Y. Song and X.–W. Zha, Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites, Computational Materials Science, 49 (2010) 899–903.CrossRefGoogle Scholar
  11. [11]
    J. Stein, B. Lenczowski, N. Fréty and E. Anglaret, Mechanical reinforcement of a high–performance aluminium alloy AA5083 with homogeneously dispersed multi–walled carbon nanotubes, Carbon, 50 (2012) 2264–2272.CrossRefGoogle Scholar
  12. [12]
    T. Tokunaga, K. Kaneko and Z. Horita, Production of aluminum–matrix carbon nanotube composite using high pressure torsion, Materials Science and Engineering: A, 490 (2008) 300–304.CrossRefGoogle Scholar
  13. [13]
    S. Xiao and W. Hou, Studies of nanotube–based aluminum composites using the bridging domain coupling method, International Journal for Multiscale Computational Engineering, 5 (2007).Google Scholar
  14. [14]
    Z. Hu, J. Zhang, Y. Yan, J. Yan and T. Sun, Molecular dynamics simulation of tensile behavior of diffusion bonded Ni/Al nanowires, Journal of Mechanical Science and Technology, 27 (2013) 43–46.CrossRefGoogle Scholar
  15. [15]
    A. Kutana and K. Giapis, Transient deformation regime in bending of single–walled carbon nanotubes, Physical Review Letters, 97 (2006) 245501.CrossRefGoogle Scholar
  16. [16]
    J. Munilla, M. Castro and A. Carnicero, Surface effects in atomistic mechanical simulations of Al nanocrystals, Physical Review B, 80 (2009) 024109.CrossRefGoogle Scholar
  17. [17]
    M. Shazed, A. Suraya, S. Rahmanian and M. M. Salleh, Effect of fibre coating and geometry on the tensile properties of hybrid carbon nanotube coated carbon fibre reinforced composite, Materials & Design (1980–2015), 54 (2014) 660–669.CrossRefGoogle Scholar
  18. [18]
    N. Silvestre, B. Faria and J. N. C. Lopes, Compressive behavior of CNT–reinforced aluminum composites using molecular dynamics, Composites Science and Technology, 90 (2014) 16–24.CrossRefGoogle Scholar
  19. [19]
    S. Simões, F. Viana, M. A. Reis and M. F. Vieira, Influence of dispersion/mixture time on mechanical properties of Al–CNTs nanocomposites, Composite Structures, 126 (2015) 114–122.CrossRefGoogle Scholar
  20. [20]
    S. M. H. Farrash, M. Shariati and J. Rezaeepazhand, The effect of carbon nanotube dispersion on the dynamic characteristics of unidirectional hybrid composites: An experi mental approach, Composites Part B: Engineering, 122 (2017) 1–8.CrossRefGoogle Scholar
  21. [21]
    S.–E. Lee and S.–H. Park, Enhanced dispersion and material properties of multi–walled carbon nanotube composites through turbulent Taylor–Couette flow, Composites Part A: Applied Science and Manufacturing, 95 (2017) 118–124.CrossRefGoogle Scholar
  22. [22]
    J. Wang and D. Y. Pui, Dispersion and filtration of carbon nanotubes (CNTs) and measurement of nanoparticle agglomerates in diesel exhaust, Chemical Engineering Science, 85 (2013) 69–76.CrossRefGoogle Scholar
  23. [23]
    J.–Z. Liao, M.–J. Tan and I. Sridhar, Spark plasma sintered multi–wall carbon nanotube reinforced aluminum matrix composites, Materials & Design, 31 (2010) S96–S100.Google Scholar
  24. [24]
    J. Winey, A. Kubota and Y. Gupta, A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: Thermoelastic response of aluminum, Modelling and Simulation in Materials Science and Engineering, 17 (2009) 055004.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dong Mun Park
    • 1
  • Jun Hwan Kim
    • 1
  • Seung Jun Lee
    • 2
  • Gil Ho Yoon
    • 1
  1. 1.School of Mechanical EngineeringHanyang UniversitySeoulKorea
  2. 2.School of Mechanical, Robotics, and Energy EngineeringDongguk UniversitySeoulKorea

Personalised recommendations