Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 12, pp 5839–5843 | Cite as

Study on the flexoelectric characteristics in the sensing element of a duplex frustum pyramid

  • Seol ryung KwonEmail author
Article
  • 14 Downloads

Abstract

Recently, many researchers have studied to overcome some disadvantages of conventional sensing mechanisms. And the flexoelectric effect draw great attention as key to enhance the sensor performance especially in micro/nano scale. However, the relatively low flexoelectric effect in macro scale becomes a difficulty to commercialization. In this paper, in order to enhance the performance of sensor using the flexoelectric effect, the sensing element of duplex frustum pyramid is suggested as an alternative to the sensing element of single frustum pyramid. The flexoelectric characteristics for the duplex frustum pyramid, which is made of barium strontium titanate (Ba0.65Sr0.35TiO3 - BST) ceramic, are investigated numerically. If the height, top surface, edge angle and flexoelectric coefficient of the single and duplex frustum pyramids are identical (H = 2 mm, θ = 45°, μ11 = 100 μC/m and a = 1 mm), the total volume of the duplex frustum pyramid is about 60 % of the case of the single frustum one. Moreover, the charge output for the duplex frustum pyramid becomes nearly double of the sensing element of single frustum pyramid. Also, most of charge output develops in the neighborhood of the top and bottom surfaces it is much preferable to use the sensing element of duplex frustum pyramid rather than use the sensing element of single frustum pyramid as long as it is manufacturable.

Keywords

Flexoelectricity Flexoelectric polarization Duplex frustum pyramid Sensing element Sensor Barium strontium titanate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Albarbar, A. Badri, J. K. Sinha and A. Starr, Performance evaluation of MEMS accelerometers, Measurement, 42 (5) (2009) 790–795.CrossRefGoogle Scholar
  2. [2]
    V. Sharapov, Piezoceramic sensors, Springer Science & Business Media (2011).CrossRefGoogle Scholar
  3. [3]
    S. Tadigadapa and K. Mateti, Piezoelectric MEMS sensors: state–of–the–art and perspectives, Measurement Science and Technology, 20 (9) (2009) 092001.CrossRefGoogle Scholar
  4. [4]
    S. M. Kogan, Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals, Sov. Phys. Solid State, 5 (10) (1964) 2069–2070.Google Scholar
  5. [5]
    X. Jiang, W. Huang and S. Zhang, Flexoelectric nanogenerator: Materials, structures and devices, Nano Energy, 2 (6) (2013) 1079–1092.CrossRefGoogle Scholar
  6. [6]
    W. Huang, K. Kim, S. Zhang, F.–G. Yuan and X. Jiang, Scaling effect of flexoelectric (Ba,Sr)TiO3 microcantilevers, Physica Status Solidi Rapid Research Letters, 5 (9) (2011) 350–352.CrossRefGoogle Scholar
  7. [7]
    L. E. Cross, Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients, Journal of Materials Science, 41 (1) (2006) 53–63.CrossRefGoogle Scholar
  8. [8]
    S. R. Kwon, W. Huang, L. Shu, F.–G. Yuan, J.–P. Maria and X. Jiang, Flexoelectricity in barium strontium titanate thin film, Applied Physics Letters, 105 (14) (2014) 142904.CrossRefGoogle Scholar
  9. [9]
    P. Glynne–Jones, S. Beeby and N. White, A method to determine the ageing rate of thick–film PZT layers, Measurement Science and Technology, 12 (2001) 663.CrossRefGoogle Scholar
  10. [10]
    J. F. Shepard, F. Chu, I. Kanno and S. Trolier–McKinstry, Characterization and aging response of the d31 piezoelectric coefficient of lead zirconate titanate thin films, Journal of Applied Physics, 85 (9) (1999) 6711–6716.CrossRefGoogle Scholar
  11. [11]
    W. Huang, S.–R. Kwon, S. Zhang, F.–G. Yuan and X. Jiang, A trapezoidal flexoelectric accelerometer, Journal of Intelligent Material Systems and Structures, 25 (3) (2014) 271–277.CrossRefGoogle Scholar
  12. [12]
    W. Huang, X. Yan, S. R. Kwon, S. Zhang, F. G. Yuan and X. Jiang, Flexoelectric strain gradient detection using Ba 0.64 Sr 0.36 TiO3 for sensing, Applied Physics Letters, 101 (25) (2012) 252903–252903–252904.CrossRefGoogle Scholar
  13. [13]
    S. Kwon, W. Huang, S. Zhang, F. Yuan and X. Jiang, Flexoelectric sensing using a multilayered barium strontium titanate structure, Smart Materials and Structures, 22 (11) (2013) 115017.CrossRefGoogle Scholar
  14. [14]
    S. R. Kwon, W. Huang, S. Zhang, F.–G. Yuan and X. Jiang, A new type of microphone using flexoelectric barium strontium titnate, SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics (2014) 90620Y–90620Y–90627.Google Scholar
  15. [15]
    P. Zubko, G. Catalan and A. K. Tagantsev, Flexoelectric effect in solids, Annual Review of Materials Research, 43 (2013) 387–421.CrossRefGoogle Scholar
  16. [16]
    W. Zhu, J. Y. Fu, N. Li and L. Cross, Piezoelectric composite based on the enhanced flexoelectric effects, Applied Physics Letters, 89 (19) (2006) 192904–192904–192903.CrossRefGoogle Scholar
  17. [17]
    W. Ma and L. E. Cross, Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics, Applied Physics Letters, 78 (19) (2001) 2920–2921.CrossRefGoogle Scholar
  18. [18]
    W. Ma and L. E. Cross, Flexoelectric polarization of barium strontium titanate in the paraelectric state, Applied Physics Letters, 81 (18) (2002) 3440–3442.CrossRefGoogle Scholar
  19. [19]
    W. Ma and L. E. Cross, Flexoelectric effect in ceramic lead zirconate titanate, Applied Physics Letters, 86 (7) (2005) 072905–072905–072903.CrossRefGoogle Scholar
  20. [20]
    W. Ma and L. E. Cross, Flexoelectricity of barium titanate, Applied Physics Letters, 88 (23) (2006) 232902–232902–232903.CrossRefGoogle Scholar
  21. [21]
    L. Shu, W. Huang, S. R. Kwon, Z. Wang, F. Li, X. Wei, S. Zhang, M. Lanagan, X. Yao and X. Jiang, Converse flexoelectric coefficient f1212 in bulk Ba0. 67Sr0. 33TiO3, Applied Physics Letters, 104 (23) (2014) 232902.CrossRefGoogle Scholar
  22. [22]
    S. R. Kwon, Structural analysis of truncated pyramids for flexoelectric sensing, Journal of Mechanical Science and Technology, 31 (12) (2017) 5971–5975.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mechanical Engineering TechnologyKyungpook National UniversityDaeguKorea

Personalised recommendations