Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 12, pp 5737–5747 | Cite as

Current engineering and clinical aspects of needle-free injectors: A review

  • Abdul Mohizin
  • Jung Kyung Kim
Article
  • 31 Downloads

Abstract

Needle-free injectors can be used to achieve non-invasive drug delivery by impregnating biological barriers. They are considered as the future of drug delivery and therapeutic applications. The history of needle-free injectors dates back to the 1940s and these devices have been constantly evolving since then. Their operating principles and applications have been improved over the years. Herein, we review the current engineering mechanisms and clinical aspects of needle-free microjet injectors. The present study focuses on using engineering approaches to deal with various factors that affect the penetration and dispersion characteristics of the microjet.

Keywords

Fluid dispersion Microjet Needle-free injection Penetration Skin Transdermal drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. G. Weniger and M. J. Papania, Alternative vaccine delivery methods, S. A. Plotkin, W. A. Orenstein and P. A. Offit (Eds.), Vaccines, Sixth Ed., Elsevier, Philadelphia, USA (2013) 1200–1231.Google Scholar
  2. [2]
    D. L. Bremseth and F. Pass, Delivery of insulin by jet injection: recent observations, Diabetes Technol. Ther., 3 (2) (2001) 225–232.CrossRefGoogle Scholar
  3. [3]
    S. Mitragotri, Current status and future prospects of needlefree liquid jet injectors, Nat. Rev. Drug Discov., 5 (7) (2006) 543–548.CrossRefGoogle Scholar
  4. [4]
    B. G. Weniger, Needle–free jet injection bibliography, Device & Manufacturer Roster, 2 (2000) 1998–2000.Google Scholar
  5. [5]
    M. L. Lockhart, Hypodermic injector, US Patent 2322244A (1943).Google Scholar
  6. [6]
    L. A. Jackson, G. Austin, R. T. Chen, R. Stout, F. DeStefano, G. J. Gorse, F. K. Newman, O. Yu and B. G. Weniger, Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle–free jet injectors, Vaccine, 19 (32) (2001) 4703–4709.CrossRefGoogle Scholar
  7. [7]
    B. G. Weniger, New high–speed jet injectors for mass vaccination: Pros and cons of disposable–cartridge jet injectors (DCJIs) versus multi–use–nozzle jet injectors (MUNJIs) (2004) http://apps.who.int/vaccine_research/about/gvrf_2004/en/gvrf_2004_weniger.pdf.Google Scholar
  8. [8]
    CDC, Morbidity and mortality weekly report (MMWR), General Recommendations on Immunization Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP), 51 (RR–2) (2002) 1–35, http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5102a1.htm.Google Scholar
  9. [9]
    J. Canter, K. Mackey, L. S. Good, R. R. Roberto, J. Chin, W. W. Bond, M. J. Alter and J. M. Horan, An outbreak of hepatitis B associated with jet injections in a weight reduction clinic, Arch. Intern. Med., 150 (9) (1990) 1923–1927.CrossRefGoogle Scholar
  10. [10]
    I. Parent du Chatelet, J. Lang, M. Schlumberger, E. Vidor, G. Soula, A. Genet, S. M. Standaert and P. Saliou, Clinical immunogenicity and tolerance studies of liquid vaccines delivered by jet–injector and a new single–use cartridge (Imule): comparison with standard syringe injection, Imule Investigators Group, Vaccine, 15 (4) (1997) 449–458.CrossRefGoogle Scholar
  11. [11]
    FDA, Technical considerations for pen, jet, and related injectors intended for use with drugs and biological products, (2013), http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm147095.pdf.Google Scholar
  12. [12]
    FDA, FDA update communication on use of jet injectors with inactivated influenza vaccines (2014) http://www. fda.gov/BiologicsBloodVaccines/Vaccines/QuestionsaboutV accines/ucm276773.htm.Google Scholar
  13. [13]
    J. Schramm and S. Mitragotri, Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration, Pharm. Res., 19 (11) (2002) 1673–1679.CrossRefGoogle Scholar
  14. [14]
    O. A. Shergold, N. A. Fleck and T. S. King, The penetration of a soft solid by a liquid jet, with application to the administration of a needle–free injection, J. Biomech., 39 (14) (2006) 2593–2602.CrossRefGoogle Scholar
  15. [15]
    R. Portaro and H. D. Ng, Experiments and modeling of airpowered needle–free liquid injectors, J. Med. Biol. Eng., 35 (5) (2015) 685–695.CrossRefGoogle Scholar
  16. [16]
    H. Nakayama, R. Portaro, C. B. Kiyanda and H. D. Ng, Cfd modeling of high speed liquid jets from an air–powered needle–free injection system, J. Mech. Med. Biol., 16 (04) (2016) 1650045.CrossRefGoogle Scholar
  17. [17]
    A. Mohizin, K. E. R. Roy, D. Lee, S. K. Lee and J. K. Kim, Computational fluid dynamics of impinging microjet for a needle–free skin scar treatment system, Comput. Biol. Med., 101 (2018) 61–69.CrossRefGoogle Scholar
  18. [18]
    T. M. Grant, K. D. Stockwell, J. B. Morrison and D. D. Mann, Effect of pressure, volume and density on the jet dispersion of needle–free injection devices, Biosyst. Eng., 8 (2015) 4–9.Google Scholar
  19. [19]
    A. B. Baker and J. E. Sanders, Fluid mechanics analysis of a spring–loaded jet injector, IEEE Trans. Biomed. Eng., 46 (2) (1999) 235–242.CrossRefGoogle Scholar
  20. [20]
    A. Schoubben, A. Cavicchi, L. Barberini, A. Faraon, M. Berti, M. Ricci, P. Blasi and L. Postrioti, Dynamic behavior of a spring–powered micronozzle needle–free injector, Int. J. Pharm., 491 (1–2) (2015) 91–98.CrossRefGoogle Scholar
  21. [21]
    D. Zeng, Y. Kang, L. Xie, X. Xia, Z. Wang and W. Liu, A mathematical model and experimental verification of optimal nozzle diameter in needle–free injection, J. Pharm. Sci., 107 (4) (2018) 1086–1094.CrossRefGoogle Scholar
  22. [22]
    R. M. J. Williams, N. C. Hogan, P. M. F. Nielsen, I. W. Hunter and A. J. Taberner, A computational model of a controllable needle–free jet injector, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2012) 2052–2055.Google Scholar
  23. [23]
    A. Taberner, N. C. Hogan and I. W. Hunter, Needle–free jet injection using real–time controlled linear Lorentz–force actuators, Med. Eng. Phys., 34 (9) (2012) 1228–1235.CrossRefGoogle Scholar
  24. [24]
    G. Park, A. Modak, N. C. Hogan and I. W. Hunter, The effect of jet shape on jet injection, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2015) 7350–7353.Google Scholar
  25. [25]
    J. C. Stachowiak, M. G. von Muhlen, T. H. Li, L. Jalilian, S. H. Parekh and D. A. Fletcher, Piezoelectric control of needle–free transdermal drug delivery, J. Control. Release, 124 (1–2) (2007) 88–97.CrossRefGoogle Scholar
  26. [26]
    A. Arora, I. Hakim, J. Baxter, R. Rathnasingham, R. Srinivasan, D. A. Fletcher and S. Mitragotri, Needle–free delivery of macromolecules across the skin by nanolitervolume pulsed microjets, Proc. Natl. Acad. Sci., 104 (11) (2007) 4255–4260.CrossRefGoogle Scholar
  27. [27]
    A. M. Römgens, D. Rem–Bronneberg, R. Kassies, M. Hijlkema, D. L. Bader, C. W. J. Oomens and M. P. B. Van Bruggen, Penetration and delivery characteristics of repetitive microjet injection into the skin, J. Control. Release, 234 (2016) 98–103.CrossRefGoogle Scholar
  28. [28]
    I. R. Peters, Y. Tagawa, N. Oudalov, C. Sun, A. Prosperetti, D. Lohse and D. van der Meer, Highly focused supersonic microjets: numerical simulations, J. Fluid Mech., 719 (2013) 587–605.CrossRefzbMATHGoogle Scholar
  29. [29]
    Y. Tagawa, N. Oudalov, A. El Ghalbzouri, C. Sun and D. Lohse, Needle–free injection into skin and soft matter with highly focused microjets, Lab Chip, 13 (7) (2013) 1357–63.CrossRefGoogle Scholar
  30. [30]
    T. Kato, T. Arafune, T. Washio, A. Nakagawa, Y. Ogawa, T. Tominaga, I. Sakuma and E. Kobayashi, Mechanics of the injected pulsejet into gelatin gel and evaluation of the effect by puncture and crack generation and growth, J. Appl. Phys., 116 (7) (2014) 074901.CrossRefGoogle Scholar
  31. [31]
    M. A. F. Kendall, The delivery of particulate vaccines and drugs to human skin with a practical, hand–held shock tubebased system, Shock Waves, 12 (1) (2002) 23–30.CrossRefGoogle Scholar
  32. [32]
    G. Jagadeesh, G. D. Prakash, S. G. Rakesh, U. S. Allam, M. G. Krishna, S. M. Eswarappa and D. Chakravortty, Microshock waves mediated needle–less vaccine delivery, Clin. Vaccine Immunol., 18 (4) (2011) 539–545.CrossRefGoogle Scholar
  33. [33]
    J. C. Stachowiak, T. H. Li, A. Arora, S. Mitragotri and D. A. Fletcher, Dynamic control of needle–free jet injection, J. Control. Release, 135 (2) (2009) 104–112.CrossRefGoogle Scholar
  34. [34]
    B. P. Ruddy, A. W. Dixon, R. M. J. Williams and A. J. Taberner, Optimization of portable electronically controlled needle–free jet injection systems, IEEE/ASME Trans. Mechatronics, 22 (5) (2017) 2013–2021.CrossRefGoogle Scholar
  35. [35]
    J. W. McKeage, B. P. Ruddy, P. M. F. Nielsen and A. J. Taberner, A device for controlled jet injection of large volumes of liquid, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2016) 553–556.Google Scholar
  36. [36]
    B. D. Hemond, D. M. Wendell, N. C. Hogan, A. J. Taberner and I. W. Hunter, A Lorentz–force actuated autoloading needle–free injector, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2006) 679–682.Google Scholar
  37. [37]
    J. K. Kim, A. Mohizin and S. K. Lee, Experimental investigation on key parameters in air–powered needle–free injection system for skin treatment, J. Korean Soc. Vis., 16 (1) (2018) 42–47.Google Scholar
  38. [38]
    G. Zhang, Y. Z. Jin, T. Setoguchi and H. D. Kim, Study on drug powder acceleration in a micro shock tube, J. Mech. Sci. Technol., 30 (9) (2016) 4007–4013.CrossRefGoogle Scholar
  39. [39]
    J. Schramm–Baxter and S. Mitragotri, Needle–free jet injections: Dependence of jet penetration and dispersion in the skin on jet power, J. Control. Release, 97 (3) (2004) 527–535.CrossRefGoogle Scholar
  40. [40]
    J. Schramm–Baxter, J. Katrencik and S. Mitragotri, Jet injection into polyacrylamide gels: investigation of jet injection mechanics, J. Biomech., 37 (8) (2004) 1181–1188.CrossRefGoogle Scholar
  41. [41]
    Y. Michinaka and S. Mitragotri, Delivery of polymeric particles into skin using needle–free liquid jet injectors, J. Control. Release, 153 (3) (2011) 249–254.CrossRefGoogle Scholar
  42. [42]
    J. Baxter and S. Mitragotri, Jet–induced skin puncture and its impact on needle–free jet injections: Experimental studies and a predictive model, J. Control. Release, 106 (3) (2005) 361–373.CrossRefGoogle Scholar
  43. [43]
    O. A. Shergold and N. A. Fleck, Mechanisms of deep penetration of soft solids, with application to the injection and wounding of skin, Proc. R. Soc. A Math. Phys. Eng. Sci., 460 (2050) (2004) 3037–3058.CrossRefzbMATHGoogle Scholar
  44. [44]
    J. Seok, C. T. Oh, H. J. Kwon, T. R. Kwon, E. J. Choi, S. Y. Choi, S. K. Mun, S. H. Han, B. J. Kim and M. N. Kim, Investigating skin penetration depth and shape following needle–free injection at different pressures: A cadaveric study, Lasers Surg. Med., 48 (6) (2016) 624–628.CrossRefGoogle Scholar
  45. [45]
    A. Repici, R. Maselli, S. Carrara, A. Anderloni, M. Enderle and C. Hassan, Standard needle versus needleless injection modality: animal study on different fluids for submucosal elevation, Gastrointest. Endosc., 86 (3) (2017) 553–558.CrossRefGoogle Scholar
  46. [46]
    N. Rajaratnam, S. A. H. Rizvi, P. M. Steffler and P. R. Smy, An experimental study of very high velocity circular water jets in air, J. Hydraul. Res., 32 (3) (1994) 461–470.CrossRefGoogle Scholar
  47. [47]
    K. Chen, H. Zhou, J. Li and G. J. Cheng, A model on liquid penetration into soft material with application to needle–free jet injection, J. Biomech. Eng., 132 (10) (2010) 101005.CrossRefGoogle Scholar
  48. [48]
    B. D. Hunsaker and L. J. Perino, Efficacy of intradermal vaccination, Vet. Immunol. Immunopathol., 79 (1–2) (2001) 1–13.CrossRefGoogle Scholar
  49. [49]
    R. M. Jacobson, A. Swan, A. Adegbenro, S. L. Ludington, P. C. Wollan and G. A. Poland, Making vaccines more acceptable–methods to prevent and minimize pain and other common adverse events associated with vaccines, Vaccine, 19 (17–19) (2001) 2418–2427.CrossRefGoogle Scholar
  50. [50]
    D. U. Ekwueme, B. G. Weniger and R. T. Chen, Modelbased estimates of risks of disease transmission and economic costs of seven injection devices in sub–Saharan Africa, Bull. World Health Organ., 80 (11) (2002) 859–870.Google Scholar
  51. [51]
    E. H. Moylett and I. C. Hanson, Mechanistic actions of the risks and adverse events associated with vaccine administration, J. Allergy Clin. Immunol., 114 (5) (2004) 1010–1020.CrossRefGoogle Scholar
  52. [52]
    M. M. Levine and M. B. Sztein, Vaccine development strategies for improving immunization: The role of modern immunology, Nat. Immunol., 5 (5) (2004) 460–464.CrossRefGoogle Scholar
  53. [53]
    M. Dicko, A. Q. Oni, S. Ganivet, S. Kone, L. Pierre and B. Jacquet, Safety of immunization injections in Africa: not simply a problem of logistics, Bull. World Health Organ., 78 (2) (2000) 163–169.Google Scholar
  54. [54]
    L. Simonsen, A. Kane, J. Lloyd, M. Zaffran and M. Kane, Unsafe injections in the developing world and transmission of bloodborne pathogens: A review, Bull. World Health Organ., 77 (10) (1999) 789–800.Google Scholar
  55. [55]
    A. Fisch, P. Cadilhac, E. Vidor, T. Prazuck, A. Dublanchet and C. Lafaix, Immunogenicity and safety of a new inactivated hepatitis A vaccine: A clinical trial with comparison of administration route, Vaccine, 14 (12) (1996) 1132–1136.CrossRefGoogle Scholar
  56. [56]
    J. Williams, L. Fox–Leyva, C. Christensen, D. Fisher, E. Schlicting, M. Snowball, S. Negus, J. Mayers, R. Koller and R. Stout, Hepatitis A vaccine administration: Comparison between jet–injector and needle injection, Vaccine, 18 (18) (2000) 1939–1943.CrossRefGoogle Scholar
  57. [57]
    S. Mitragotri, Immunization without needles, Nat. Rev. Immunol., 5 (12) (2005) 905–916.CrossRefGoogle Scholar
  58. [58]
    E. L. Giudice and J. D. Campbell, Needle–free vaccine delivery, Adv. Drug Deliv. Rev., 58 (1) (2006) 68–89.CrossRefGoogle Scholar
  59. [59]
    J. R. Denne, K. L. Andrews, D. V Lees and W. Mook, A survey of patient preference for insulin jet injectors versus needle and syringe, Diabetes Educ., 18 (3) (1992) 223–227.CrossRefGoogle Scholar
  60. [60]
    C. Weller and M. Linder, Jet injection of insulin vs the syringe–and–needle method, JAMA, 195 (10) (1966) 844–847.CrossRefGoogle Scholar
  61. [61]
    G. B. Pehling and J. E. Gerich, Comparison of plasma insulin profiles after subcutaneous administration of insulin by jet spray and conventional needle injection in patients with insulin–dependent diabetes mellitus, Mayo Clin. Proc., 59 (11) (1984) 751–754.CrossRefGoogle Scholar
  62. [62]
    C. M. G. J. Houtzagers, A. Ph. Visser, P. A. Berntzen, R. J. Heine and E. A. van der Veen, The MediJector II: Efficacy and acceptability in insulin‐dependent diabetic patients with and without needle phobia, Diabet. Med., 5 (1988) 135–138.CrossRefGoogle Scholar
  63. [63]
    M. H. Gold, What’s new in fillers in 2010, J. Clin. Aesthetic Dermatology, 3 (8) (2010) 36–45.Google Scholar
  64. [64]
    M. H. Gold, Use of hyaluronic acid fillers for the treatment of the aging face, Clin. Interv. Aging, 2 (3) (2007) 369–376.CrossRefGoogle Scholar
  65. [65]
    T. Kono, B. M. Kinney, W. F. Groff, H. H. Chan, A. R. Ercocen and M. Nozaki, Randomized, evaluator–blind, splitface comparison study of single cross–linked versus double cross–linked hyaluronic acid in the treatment of glabellar lines, Dermatologic Surg., 34 (SUPPL 1) (2008) 25–30.Google Scholar
  66. [66]
    P. E. Kelly, Injectable success: From fillers to Botox, Facial Plast. Surg., 23 (1) (2007) 7–18.CrossRefGoogle Scholar
  67. [67]
    M. P. Lupo, Hyaluronic acid fillers in facial rejuvenation, Semin. Cutan. Med. Surg., 25 (3) (2006) 122–126.CrossRefGoogle Scholar
  68. [68]
    A. Levenberg, S. Halachmi, A. Arad–Cohen, D. Ad–El, D. Cassuto and M. Lapidoth, Clinical results of skin remodeling using a novel pneumatic technology, Int. J. Dermatol., 49 (12) (2010) 1432–1439.CrossRefGoogle Scholar
  69. [69]
    J. W. Lee, B. J. Kim, M. N. Kim and C. K. Lee, Treatment of Acne scars using subdermal minimal surgery technology, Dermatologic Surg., 36 (8) (2010) 1281–1287.CrossRefGoogle Scholar
  70. [70]
    T. R. Kwon, J. Seok, J. H. Jang, M. K. Kwon, C. T. Oh, E. J. Choi, H. K. Hong, Y. S. Choi, J. Bae and B. J. Kim, Needle–free jet injection of hyaluronic acid improves skin remodeling in a mouse model, Eur. J. Pharm. Biopharm., 105 (2016) 69–74.CrossRefGoogle Scholar
  71. [71]
    S. D. Patil, D. G. Rhodes and D. J. Burgess, DNA–based therapeutics and DNA delivery systems: A comprehensive review, AAPS J., 7 (1) (2005) E61–E77.Google Scholar
  72. [72]
    E. Check, Shining hopes dented–but not dashed, Nature, 420 (6917) (2002) 735.CrossRefGoogle Scholar
  73. [73]
    E. Marshall, Gene therapy death prompts review of adenovirus vector, Science, 286 (5448) (1999) 2244–2245.CrossRefGoogle Scholar
  74. [74]
    P. A. Furth, A. Shamay and L. Hennighausen, Gene transfer into mammalian cells by jet injection, Hybridoma, 14 (2) (1995) 149–152.CrossRefGoogle Scholar
  75. [75]
    Y. Taniyama, J. Azuma, Y. Kunugiza, K. Iekushi, H. Rakugi and R. Morishita, Therapeutic option of plasmid–DNA based gene transfer, Curr. Top. Med. Chem., 12 (15) (2012) 1630–1637.CrossRefGoogle Scholar
  76. [76]
    W. Walther, U. Stein, I. Fichtner, C. Voss, T. Schmidt, M. Schleef, T. Nellessen and P. M. Schlag, Intratumoral lowvolume jet–injection for efficient nonviral gene transfer, Mol. Biotechnol., 21 (2) (2002) 105–115.CrossRefGoogle Scholar
  77. [77]
    W. Walther, R. Siegel, D. Kobelt, T. Knösel, M. Dietel, A. Bembenek, J. Aumann, M. Schleef, R. Baier, U. Stein and P. M. Schlag, Novel jet–injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer, Clin. Cancer Res., 14 (22) (2008) 7545–7553.CrossRefGoogle Scholar
  78. [78]
    C. G. Beckett, J. Tjaden, T. Burgess, J. R. Danko, C. Tamminga, M. Simmons, S.–J. Wu, P. Sun, T. Kochel, K. Raviprakash, C. G. Hayes and K. R. Porter, Evaluation of a prototype dengue–1 DNA vaccine in a Phase 1 clinical trial, Vaccine, 29 (5) (2011) 960–968.CrossRefGoogle Scholar
  79. [79]
    M. Raska and J. Turanek, DNA vaccines for the induction of immune responses in mucosal tissues, Fourth Ed., Elsevier (2015).CrossRefGoogle Scholar
  80. [80]
    Y. Kunugiza, N. Tomita, Y. Taniyama, T. Tomita, M. K. Osako, K. Tamai, T. Tanabe, Y. Kaneda, H. Yoshikawa and R. Morishita, Acceleration of wound healing by combined gene transfer of hepatocyte growth factor and prostacyclin synthase with Shima Jet, Gene Ther., 13 (15) (2006) 1143–1152.CrossRefGoogle Scholar
  81. [81]
    A. Nakagawa, H. Makino, M. Aoki, T. Miyake, S. Shiraya, T. Nakamura, T. Ogihara, Y. Kimata and R. Morishita, Improvement of survival of skin flaps by combined gene transfer of hepatocyte growth factor and prostacyclin synthase, J. Gene Med., 9 (2007) 1087–1094.CrossRefGoogle Scholar
  82. [82]
    A. M. Pereira, A. A. van der Klaauw, H. P. F. Koppeschaar, J. W. A. Smit, S. W. van Thiel, J. van Doorn, N. R. Biermasz, F. Roelfsema and J. A. Romijn, Efficacy of needle–free administration of recombinant human growth hormone in adults with growth hormone deficiency, Br. J. Clin. Pharmacol., 61 (4) (2006) 451–455.CrossRefGoogle Scholar
  83. [83]
    H. Agersø, J. Møller–Pedersen, S. Cappi, P. Thomann, B. J. Jesussek and T. Senderovitz, Pharmacokinetics and pharmacodynamics of a new formulation of recombinant human growth hormone administered by zomajet 2 vision, a new needle–free device, compared to subcutaneous administration using a conventional syringe, J. Clin. Pharmacol., 42 (12) (2002) 1262–1268.CrossRefGoogle Scholar
  84. [84]
    A. Verhagen, J. T. Ebels, A. A. Dogterom and J. H. Jonkman, Pharmacokinetics and pharmacodynamics of a single dose of recombinant human growth hormone after subcutaneous administration by jet–injection: comparison with conventional needle–injection, Eur. J. Clin. Pharmacol., 49 (1–2) (1995) 69–72.Google Scholar
  85. [85]
    P. Bareille, M. MacSwiney, A. Albanese, C. De Vile and R. Stanhope, Growth hormone treatment without a needle using the Preci–Jet 50 transjector, Arch. Dis. Child., 76 (1) (1997) 65–67.CrossRefGoogle Scholar
  86. [86]
    N. Jimenez, H. Bradford, K. D. Seidel, M. Sousa and A. M. Lynn, A comparison of a needle–free injection system for local anesthesia versus EMLA for intravenous catheter insertion in the pediatric patient, Anesth. Analg., 102 (2) (2006) 411–414.CrossRefGoogle Scholar
  87. [87]
    A. K. Munshi, A. Hegde and N. Bashir, Clinical evaluation of the efficacy of anesthesia and patient preference using the needle–less jet syringe in pediatric dental practice, J. Clin. Pediatr. Dent., 25 (2) (2001) 131–136.CrossRefGoogle Scholar
  88. [88]
    E. K. Zsigmond, P. Darby, H. M. Koenig and E. F. Goll, Painless intravenous catheterization by intradermal jet injection of lidocaine: A randomized trial, J. Clin. Anesth., 11 (2) (1999) 87–94.CrossRefGoogle Scholar
  89. [89]
    R. S. Greenberg, L. G. Maxwell, M. Zahurak and M. Yaster, Preanesthetic medication of children with midazolam using the Biojector jet injector, Anesthesiology, 83 (2) (1995) 264–269.CrossRefGoogle Scholar
  90. [90]
    J. E. Jones and J. A. Dean, Chapter 15–Local anesthesia and pain control for the child and adolescent, McDonald Avery’s Dentistry for the Child and Adolescent, Tenth Ed., Mosby, St. Louis, USA (2016) 274–285.Google Scholar
  91. [91]
    R. T. Brodell and D. L. Bredle, The treatment of palmar and plantar warts using natural alpha interferon and a needleless injector, Dermatol. Surg., 21 (3) (1995) 213–218.CrossRefGoogle Scholar
  92. [92]
    T. Suzuki, I. Takahashi and G. Takada, Daily subcutaneous erythropoietin by jet injection in pediatric dialysis patients, Nephron, 69 (3) (1995) 347.CrossRefGoogle Scholar
  93. [93]
    H. Ren, B. S. Yeow, J. Sun and J. V. Iyer, Electromagnetic needleless injector with halbach array towards intravitreal delivery, IEEE Access, 6 (2017) 1267–1276.CrossRefGoogle Scholar
  94. [94]
    S. J. Hollingsworth, K. Hoque, D. Linnard, D. G. Corry and S. G. Barker, Delivery of low molecular weight heparin for prophylaxis against deep vein thrombosis using a novel, needle–less injection device (J–Tip), Ann. R. Coll. Surg. Engl., 82 (6) (2000) 428–431.Google Scholar
  95. [95]
    D. A. Fletcher and D. V. Palanker, Pulsed liquid microjet for microsurgery, Appl. Phys. Lett., 78 (13) (2001) 1933–1935.CrossRefGoogle Scholar
  96. [96]
    U. Schneider, R. Birnbacher and E. Schober, Painfulness of needle and jet injection in children with diabetes mellitus, Eur. J. Pediatr., 153 (6) (1994) 409–410.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Graduate SchoolKookmin UniversitySeoulKorea
  2. 2.School of Mechanical Engineering and Department of Integrative Biomedical Science and Engineering, Graduate SchoolKookmin UniversitySeoulKorea

Personalised recommendations