Journal of Mechanical Science and Technology

, Volume 32, Issue 12, pp 5711–5721 | Cite as

The evaluation of numerical methods for determining the efficiency of Tesla turbine operation

  • Krzysztof Rusin
  • Włodzimierz Wróblewski
  • Sebastian Rulik


The Tesla turbine operation is based on the use of tangential stresses arising from the fluid viscosity and turbulence and from the phenomenon of the fluid adhesion to the surface it flows past. The paper presents a description and testing of the Tesla turbine model, pointing to the impact of the applied turbulence models on the prediction of the Tesla turbine operating conditions. Non-stationary simulations are performed using the Ansys CFX 18 commercial code. The following turbulence models are analysed: the RNG k-ε, the k-ω SST and the SST-SAS in two variants of time and space discretization. The flow field structures and the flow unsteadiness occurring in the gaps between the rotor discs are described. The distribution of power unit arising on the discs is determined and the predictions as to the power generated by the turbine coming from numerical analysis and preliminary experimental investigations are compared. A comparison of efficiency estimation is made using different methods.


Bladeless turbine CFD simulation Tesla turbine Turbine efficiency evaluation Turbulence models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Tesla, Turbine, Patent No: 1,061,206, United States Patent Office of New York (1913).Google Scholar
  2. [2]
    The Tesla steam turbine, The rotary heat motor reduced to its simplest terms, Scientific America, 30 September (1911) 296–297.Google Scholar
  3. [3]
    T. Engin, M. Oezdemir and S. Cesmeci, Design, testing and two–dimensional flow modelling of a multiple disk fan, Experimental Thermal Fluid Science, 33 (8) (2009) 1180–1187.Google Scholar
  4. [4]
    W. Rice, Tesla turbomachinery, IV International Tesla Symposium, Belgrade, Yugoslavia (1991) 117–125.Google Scholar
  5. [5]
    A. L. Neckel and M. Godinho, Influence of geometry on the efficiency of convergent–divergent nozzles applied to Tesla turbines, Experimental Thermal and Fluid Science, 62 (2015) 131–140.Google Scholar
  6. [6]
    X. L. Tong and E. Luke, Turbulence models and heat transfer in nozzle flows, AIAA, 42 (11) (2004) 2391–2393.Google Scholar
  7. [7]
    K. Rusin and W. Wróblewski, Numerical analysis of the Tesla turbine operating conditions, Współczesne Problem Energetyki, 4 (2017) 97–106.Google Scholar
  8. [8]
    K. Rusin, The influence of outlet system geometry on Tesla turbine working parameters, Acta Innovations, 22 (2017) 58–67.Google Scholar
  9. [9]
    S. Sengupta and A. Guha, A theory of Tesla disc turbines, Journal of Power and Energy, 226 (5) (2012) 650–663.Google Scholar
  10. [10]
    P. Lampart and Ł. Jędrzejewski, Investigations of aerodynamics of Tesla bladeless turbine, Journal of Theoretical and Applied Mechanics, 49 (2) (2011) 477–499.Google Scholar
  11. [11]
    C. K. Kim and J. Y. Yoon, Performance analysis of bladeless jet propulsion micro steam turbine for micro–CHP (combined heat and power) system utilizing low–grade heat sources, Energy, 101 (2016) 411–420.Google Scholar
  12. [12]
    F. Hamdi, J. Seo and S. Han, Numerical investigation of an organic Rankine cycle radial inflow two–stage turbine, Journal of Mechanical Science and Technology, 31 (4) (2017) 1721–1728.Google Scholar
  13. [13]
    E. Yun, H. Park, S. Y. Yoon and K. C. Kim, Dual parallel organic rankine cycle (ORC) system for high efficiency waste heat recovery in marine application, Journal of Mechanical Science and Technology, 29 (6) (2015) 2517–2528.Google Scholar
  14. [14]
    S. Yatsuzuka, Y. Niiyama, K. Fukuda, K. Muramatsu and K. Shikazono, Experimental and numerical evaluation of liquid–piston steam engine, Energy, 87 (2015) 1–9.Google Scholar
  15. [15]
    V. P. Carey, Assessment of Tesla turbine performance for small scale Rankine combined heat and power systems, Journal of Engineering for Gas Turbines and Power, 132 (2010) 122301–1–122301–8.Google Scholar
  16. [16]
    P. Lampart, K. Kosowski, M. Piwowarski and Ł. Jędrzejewski, Design analysis of Tesla micro–turbine operating on a low–boiling medium, Polish Martime Research, 63 (16) (2009) 28–33.Google Scholar
  17. [17]
    J. Song, C. Gu and X. Li, Performance estimation of Tesla turbine applied in small scale organic rankine cycle (ORC) system, Applied Thermal Engineering, 110 (2017) 318–326.Google Scholar
  18. [18]
    G. E. Miller, B. D. Etter and J. M. Dorsi, A multiple disk pump as a blood flow device, IEEE Transactions on Biomedical Engineering, 37 (2) (1990) 157–163.Google Scholar
  19. [19]
    Ł. Szablowski, P. Krawczyk, K. Badyda, S. Karellas, E. Kakaras and W. Bujalski, Energy and exergy analysis of adiabatic compressed air Energy storage system, Energy, 138 (2017) 12–18.Google Scholar
  20. [20]
    S. Kapila, A. O. Oni and A. Kumara, The development of techno–economic models for large scale energy storage systems, Energy, 140 (1) (2017) 656–672.Google Scholar
  21. [21]
    W. M. J. Cairns, The Tesla disc turbine, Camden Miniature Steam Service, Great Britain (2003).Google Scholar
  22. [22]
    G. P. Hoya and A. Guha, The design of a test rig and study of the performance and efficiency of a Tesla disc turbine, Journal of Power and Energy, 223 (4) (2009) 451–465.Google Scholar
  23. [23]
    A. Guha and B. Smiley, Experiment and analysis for an improved design of the inlet and nozzle in Tesla disc turbine, Proc. IMechE Part A: J Power Energy, 224 (2) (2010) 261–277.Google Scholar
  24. [24]
    R. Li, H. Wang, E. Yao, M. Li and W. Nan, Experimental study on bladeless turbine using incompressible working medium, Advances in Mechanical Engineering, 9 (1) (2017) 1–12.Google Scholar
  25. [25]
    W. Sutherland, The viscosity of gases and molecular force, Philosophical Magazine, 5 (36) (1893) 507–531.zbMATHGoogle Scholar
  26. [26]
    V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski and C. G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics, 4 (1992) 1510–1520.MathSciNetzbMATHGoogle Scholar
  27. [27]
    V. Yakhot and L. M. Smith, The renormalization group analysis of turbulence. I. Basic theory, Journal of Scientific Computing, 1 (1) (1986) 3–51.MathSciNetzbMATHGoogle Scholar
  28. [28]
    S. E. Ghasemi and A. A. Ranjbar, Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector, Applied Thermal Engineering, 118 (2017) 807–816.Google Scholar
  29. [29]
    F. R. Menter, Zonal two equation k–ω turbulence models for aerodynamic flows, 24th Fluid Dynamics Conference, Orlando, USA (1993).Google Scholar
  30. [30]
    F. R. Menter Influence of freestream values on k–ω turbulence model predictions, AIAA Journal, 30 (6) (1992) 1657–1659.Google Scholar
  31. [31]
    F. Menter and Y. Egorov, The scale–adaptive simulation method for unsteady turbulent flow predictions, Flow, Turbulence and Combustion, 85 (1) (2011) 113–138.zbMATHGoogle Scholar
  32. [32]
    L. Davidsion, Evaluation of the SST–SAS model, channel flow, asymmetric diffuser and axial–symmetric hill, Proc. European Conference on Computational Fluid Dynamics, Delft, The Netherlands (2006).Google Scholar
  33. [33]
    T. von Kármán, Mechanische Ähnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Fachgruppe 1 (Mathematik), 5 (1930) 58–76.Google Scholar
  34. [34]
    H. Schlichting, Boundary–layer theory, Seventh Ed., McGraw–Hill Book Company, New York, USA (1979).Google Scholar
  35. [35]
    I. Wygnanski, Y. Katz and E. Horev, On the applicability of various scaling laws to the turbulent wall jet, Jurnal of Fluid Mechanics, 234 (1992) 669–690.Google Scholar
  36. [36]
    W. K. George and L. Castillo, Zero pressure gradient turbulent layer, Applied Mechanics Reviews, 50 (1997) 689–729.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Krzysztof Rusin
    • 1
  • Włodzimierz Wróblewski
    • 1
  • Sebastian Rulik
    • 1
  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations