Journal of Mechanical Science and Technology

, Volume 32, Issue 12, pp 5671–5683 | Cite as

Numerical study of geometrical effects on the performance of an H-type cylindrical resonant photoacoustic cell

  • Madhusoodanan Mannoor
  • Jeeseong Hwang
  • Sangmo KangEmail author


We have numerically studied the geometrical effects on the performance of an H-type cylindrical resonant photoacoustic cell, composed of one resonator and two symmetrical buffer cylinders, by performing simulations on the generation of acoustic waves in the cell. Here, the acoustic response (pressure), resonance frequency and quality factor are calculated for the cell performance, while the lengths and diameters of both resonator and buffer cylinders are considered for the geometrical parameters or dimensions. Our calculation solves linearized forms of the continuity equation, Navier-Stokes equation, energy equation, and equation of state using a finite element method under an assumption that the heat addition due to the laser passage and thus the variations in the velocity, pressure and temperature fields inside the cell are small enough. First, we performed a statistical analysis using a design of experiment method to evaluate the relative impacts of the cell dimensions on the acoustic response. Subsequently, we performed a parametric study to quantify the cell performance with the dimensional variations. Our results, along with the response surface methodology, provide guidance for a systematic design optimization of the cell for the best acoustic response. The approach in this study may be applied to the design of various types of resonant photoacoustic spectroscopy devices.


H-type cell Optimization Photoacoustic pressure Quality factor Resonant photoacoustic cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. G. Bell, On the production and reproduction of sound by light, American Journal of Science, 20 (118) (1880) 305–324.CrossRefGoogle Scholar
  2. [2]
    A. G. Bell, The production of sound by radiant energy, Science, 2 (49) (1881) 242–253.CrossRefGoogle Scholar
  3. [3]
    F. G. C. Bijnen, J. Reuss and F. J. M. Harren, Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection, Review of Scientific Instruments, 67 (8) (1996) 2914–2923.CrossRefGoogle Scholar
  4. [4]
    A. Miklos, P. Hess and Z. Bozoki, Application of acoustic resonators in photoacoustic trace gas analysis and metrology, Review of Scientific Instruments, 72 (4) (2001) 1937–1955.CrossRefGoogle Scholar
  5. [5]
    K. A. Gillis, D. K. Havey and J. T. Hodges, Standard photoacoustics spectrometer: Model and validation using O2 A–band spectra, Review of Scientific Instruments, 81 (2010) 064902.CrossRefGoogle Scholar
  6. [6]
    S. Bernegger and M. W. Sigrist, Longitudinal resonant spectrophone for CO–Laser photoacoustic spectroscopy, Applied Physics B, 44 (2) (1987) 125–132.CrossRefGoogle Scholar
  7. [7]
    Y. Cai, N. Arsad, M. Li and Y. Wang, Buffer structure optimization of the photoacoustic cell for trace gas detection, Optoelectronics Letters, 9 (3) (2013) 233–237.CrossRefGoogle Scholar
  8. [8]
    Y. H. Pao, Opto acoustic spectroscopy and detection, Academic, New York (1977).Google Scholar
  9. [9]
    B. Baumann, B. Kost, H. Groninga and M. Wolff, Eigenmode analysis of photoacoustic sensors via finite element method, Review of Scientific Instruments, 77 (2006) 044901.CrossRefGoogle Scholar
  10. [10]
    B. Kost, B. Baumann, M. Germer, M. Wolff and M. Rosenkranz, Numerical shape optimization of photoacoustic resonators, Applied Physics B, 102 (1) (2011) 87–93.CrossRefGoogle Scholar
  11. [11]
    A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk and V. S. Starovoitov, A miniaturized prototype of resonant bananashaped photoacoustic cell for gas sensing, Infrared Physics & Technology, 60 (2013) 174–182.CrossRefGoogle Scholar
  12. [12]
    P. M. Morse and K. U. Ingard, Theoretical acoustics, McGraw–Hill, New York (1968).Google Scholar
  13. [13]
    B. Baumann, M. Wolff, B. Kost and H. Groninga, Finite element calculation of photoacoustic signal, Applied Optics, 46 (7) (2007) 1120–1125.CrossRefGoogle Scholar
  14. [14]
    B. Parvitte, C. Risser, R. Vallon and V. Zeninari, Quantitative simulation of photoacoustic signals using finite element modelling software, Applied Physics B, 111 (3) (2013) 383–389.CrossRefGoogle Scholar
  15. [15]
    W. M. Beltman, P. J. M. van der Hoogt, R. M. E. J. Spiering and H. Tijdeman, Implementation and experimental validation of a new viscothermal acoustic finite element for acoustoelastic Problems, Journal of Sound and Vibration, 216 (1) (1998) 159–185.CrossRefGoogle Scholar
  16. [16]
    A. Gliere, J. Rouxel, B. Parvitte, S. Boutami and V. Zeninari, A coupled model for the simulation of miniaturized and integrated photoacoustic gas detector, International Journal of Thermophysics, 34 (11) (2013) 2119–2135.CrossRefGoogle Scholar
  17. [17]
    L. Duggen, N. Lopes, M. Willatzen and H. G. Rubahn, Finite element simulation of photoacoustic pressure in a resonant photoacoustic cell using lossy boundary conditions, International Journal of Thermophysics, 32 (4) (2011) 774–785.CrossRefGoogle Scholar
  18. [18]
    Acoustic module user’s guide version 4.3,, Accessed on November (2015).Google Scholar
  19. [19]
    P. J. Ross, Taguchi techniques for quality engineering, McGraw–Hill, New York (1988).Google Scholar
  20. [20]
    A. I. Khuri and S. Mukhopadhyay, Response surface methodology, WIREs Computational Statistics, 2 (2010) 128–149.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Madhusoodanan Mannoor
    • 1
  • Jeeseong Hwang
    • 2
  • Sangmo Kang
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringDong-A UniversityBusanKorea
  2. 2.Applied Physics DivisionNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations