Skip to main content
Log in

Structural design sensitivity analysis of an ultrasonically activated scalpel to improve contact pressure distribution

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Ultrasonically activated scalpels (UAS) have excellent hemostatic effects with minimal tissue damage while dissecting tissue. However, inhomogeneous contact pressure (CP) distribution at the sealing site can decrease the quality of sealing strength and cutting. In this study, we evaluated the contact mechanics of UAS using 3D finite element analysis (FEA) simulations, and examined the effects of structural design parameters on the contact mechanics (average CP, standard deviation of CP, maximum CP, and contact area) using experiment-based sensitivity analysis. The largest positive and negative response of the average CP and standard deviation of CP were 0.68-0.85 MPa and 0.81-0.44 MPa, respectively (r = 0.32 and r = -0.73, P < 0.05) when the handle length, jaw cave, and tissue pad height were increased. In conclusion, design parameters (tissue pad height, jaw cave height, jaw cave length, and handle length) of UAS demonstrating high correlation with average CP, standard deviation of CP, maximum CP, and contact area should be considered to attain evenly distributed CP for improved structural optimization of UAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Ragab, Six years of evidence–based adult dissection tonsillectomy with ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or ‘cold steel’ dissection, The Journal of Laryngology & Otology, 12 (2012) 1056–1062.

    Article  Google Scholar 

  2. O. Scatton, R. Brustia, G. Belli and J. Pekolj, What kind of energy devices should be used for laparoscopic liver resection? Recommendations from a systematic review, Journal of Hepato–Biliary–Pancreatic Science, 22 (2015) 327–334.

    Google Scholar 

  3. B. D. Bertke, P. J. Scoggins, A. L. Welling, C. Chen, S. Kallakuri, J. M. Cavanaugh, J. W. Clymer and J. F. Amaral, Ex vivo and in vivo evaluation of an ultrasonic device for precise dissection, coagulation, and transection, Open Access Surgery, 8 (2014) 1–7.

    Google Scholar 

  4. I, Alkatout, T. Schollmeyer, N. A. Hawaldar, N. Sharma and L. Mettler, Principle and safety measures of electrosurgery in laparoscopy, Journal of the Society of Laparoendoscopic Surgeons, 16 (2012) 130–139.

    Article  Google Scholar 

  5. N. Družijanić, Z. Pogorelić, Z. Perko, I. Mrklić and S. Tomić, Comparison of lateral thermal damage of the human peritoneum using monopolar diathermy, Harmonic scalpel and LigaSure, Canadian Journal of Surgery, 55 (2012) 317–321.

    Article  Google Scholar 

  6. J. Milsom, K. Trencheva, S. Monette, R. Pavoor, R. Shukla, J. Ma and T. Sonoda, Evaluation of the safety, efficacy, and versatility of a new surgical energy device (THUNDERBEAT) in comparison with Harmonic ACE, LigaSure V, and EnSeal devices in a porcine model, Journal of Laparoendoscopic & Advanced Surgical Techniques, 22 (2012) 378–386.

    Article  Google Scholar 

  7. S. S. Ching, C. S. Verbeke, S. Homer–Vanniasinkam and M. J. McMahon, Comparison of torsional and linear mode ultrasonic coagulating shears for sealing veins, Journal of Laparoendoscopic & Advanced Surgical Techniques, 18 (2008) 819–824.

    Article  Google Scholar 

  8. H. Cheng, I. Soleas, N. C. Ferko, J. W. Clymer and J. F. Amaral, A systematic review and meta–analysis of Harmonic Focus in thyroidectomy compared to conventional techniques, Thyroid Research, 8 (2015) 1–15.

    Article  Google Scholar 

  9. R. W. Timm, R. M. Asher, K. R. Tellio, A. L. Welling, J. W. Clymer and J. F. Amaral, Sealing vessel up to 7 mm in diameter solely with ultrasonic technology, Medical Devices: Evidence and Research, 7 (2014) 263–271.

    Google Scholar 

  10. D. A. Reyes, S. I. Brown, L. Cochrane, L. S. Motta and A. Cuschieri, Thermal fusion: effects and interactions of temperature, compression, and duration variables, Surgical Endoscopy, 26 (2012) 3626–3633.

    Article  Google Scholar 

  11. A. Kirschbaum, F. Rüdell, A. Pehl and D. K. Bartsch, More compression improves sealing effect on larger pulmonary arteries, Journal of Surgical Research, 201 (2016) 202–207.

    Article  Google Scholar 

  12. S. Eick, B. Loudermilk, E. Walberg and M. N. Wente, Rationale, bench testing and in vivo evaluation of a novel 5 mm laparoscopic vessel sealing device with homogeneous pressure distribution in long instrument jaws, Annals of Surgical Innovation and Research, 7 (2013) 1–15.

    Article  Google Scholar 

  13. S. O. Hwang, J. H. Jung, H. Y. Park and W. W. Kim, A prospective, randomized study between the Small Jaw® and the Harmonic Focus® in open thyroidectomy, Otolaryngology–Head and Neck Surgery, 150 (2014) 934–938.

    Article  Google Scholar 

  14. E. G. Chekan, M. A. Davison, D. W. Singleton, J. Z. Mennone and P. Hinoul, Consistency and sealing of advanced bipolar tissue sealers, Medical Devices: Evidence and Research, 8 (2015) 193–199.

    Google Scholar 

  15. A. C. Rau, M. Frecker, A. Mathew and E. Pauli, Multifunctional forceps for use in endoscopic surgery–Initial design, prototype, and testing, Journal of Medical Devices, 5 (2011) 1–10.

    Article  Google Scholar 

  16. S. P. DiMaio and S. E. Salcudean, Needle insertion modeling and simulation, IEEE Transactions on Robotics and Automation, 19 (2003) 864–875.

    Article  Google Scholar 

  17. B. Ahn and J. Kim, Efficient soft tissue characterization under large deformations in medical simulations, International Journal of Precision Engineering and Manufacturing, 10 (2009) 115–121.

    Article  Google Scholar 

  18. M. I. Frecker, J. Schadler, S. R. Haluck, K. Culkar and R. Dziedzic, Laparoscopic multifunctional instruments: Design and testing of initial prototypes, Journal of the Society of Laparoendoscopic Surgeons, 9 (2005) 105–112.

    Google Scholar 

  19. R. E. Dodde, S. F. Miller, J. D. Geiger and A. J. Shih, Thermal electric finite element analysis and experimental validation of bipolar electrosurgical cautery, Journal of Manufacturing Science and Engineering, 130 (2008) 1–8.

    Article  Google Scholar 

  20. A. E. Anderson, B. J. Ellis and J. A. Weiss, Verification, validation and sensitivity studies in computational biomechanics, Computer Methods in Biomechanics and Biomedical Engineering, 10 (2007) 171–184.

    Article  Google Scholar 

  21. J. A. Weiss, J. C. Gardiner, B. J. Ellis, T. J. Lujan and N. S. Phatak, Three–dimensional finite element modeling of ligaments: Technical aspects, Medical Engineering & Physics, 27 (2005) 845–861.

    Article  Google Scholar 

  22. T. Zander, M. Dreischarf, A. K. Timm, W. W. Baumann and H. Schmidt, Impact of material and morphological parameters on the mechanical response of the lumbar spine–A finite element sensitivity study, Journal of Biomechanics, 53 (2017) 185–190.

    Article  Google Scholar 

  23. I. D. Sener–Yamaner, B. Ekici, A. Sertgoz, E. Yuzbasioglu and M. Ozcan, Finite element analysis on the optimal material choice and cavity design parameters for MOD inlays exposed to different force vectors and magnitudes, Journal of Adhesion Science and Technology, 31 (2017) 8–20.

    Article  Google Scholar 

  24. D. Seehofer, M. Mogl, SF. Boas–Knoop, J. Unger, A. Schirmeier, S. Chopra and D. Eurich, Safety and efficacy of new integrated bipolar and ultrasonic scissors compared to laparoscopic 5–mm sealing and cutting instruments, Surgical Endoscopy, 26 (2012) 2541–2549.

    Article  Google Scholar 

  25. W. W. Cimino, The physics of soft tissue fragmentation using ultrasonic frequency vibration of metal probes, Clinics in Plastic Surgery, 26 (1999) 447–461.

    Google Scholar 

  26. B. J. O’Daly, E. Morris, G. P. Gavin, J. M. O’Byrne and G. B. McGuinness, High–power low frequency ultrasound: A review of tissue dissection and ablation in medicine and surgery, Journal of Materials Processing Technology, 200 (2008) 38–58.

    Article  Google Scholar 

  27. M. Bahraminasab, A. Jahan, B. Sahari, M. Arumugam, M. Shamsborhan and M. R. Hassan, Using design of experiment methods for assessing peak contact pressure to material properties of soft tissue in human knee, Journal of Medical Engineering, 2013 (2013) 1–11.

    Article  Google Scholar 

  28. M. Dharme and A. Kuthe, Effect of geometric parameters in the design of customized hip implants, Journal of Medical Engineering, 41 (2017) 429–436.

    Google Scholar 

  29. MatWeb, MatWeb Material Property Data, www.matweb. com (2017).

  30. D. Foschi, P. Cellerino and F. Corsi, The mechanisms of blood vessel closure in humans by the application of ultrasonic energy, Surgical Endoscopy, 16 (2002) 814–819.

    Article  Google Scholar 

  31. T. A. Spirka, A. Erdemir, S. E. Spaulding, A. Yamane, S. Telfer and P. R. Cavanagh, Simple finite element models for use in the design of therapeutic footwear, Journal of Biomechanics, 47 (2014) 2948–2955.

    Article  Google Scholar 

  32. A. Van Schepdael, A. Carlier and L. Geris, Sensitivity analysis by design of experiment, Springer, Cham (2016).

    Book  Google Scholar 

  33. C. W. Wallwiener, T. K. Rajab, W. Zubke, K. B. Isaacson, M. Enderle, D. Schäller and M. Wallwiener, Thermal conduction, compression, and electrical current–An evaluation of major parameters of electrosurgical vessel sealing in a porcine In Vitro model, Journal of Minimally Invasive Gynecology, 15 (2008) 605–610.

    Article  Google Scholar 

  34. H. Keitel and A. Dimming–Osburg, Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input parameters, Engineering Structure, 32 (2010) 3758–3767.

    Article  Google Scholar 

  35. R. Mantke, W. Halangk, A. Habermann, B. Peters, S. Konrad, M. Guenther and H. Lippert, Efficacy and safety of 5–mm–diameter bipolar and ultrasonic shears for cutting carotid arteries of the hybrid pig, Surgical Endoscopy, 25 (2011) 577–585.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joung Hwan Mun or Hyunggun Kim.

Additional information

Recommended by Associate Editor Won Hyoung Ryu

Hyunggun Kim is an Associate Professor of the Department of Biomechatronic Engineering at Sungkyunkwan University. He received his Ph.D. degree in Biomedical Engineering from The University of Iowa. His research interests include the development of computational strategies for patientspecific cardiovascular evaluation and virtual simulation techniques for various surgical interventions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.H., Choi, A., Choi, MT. et al. Structural design sensitivity analysis of an ultrasonically activated scalpel to improve contact pressure distribution. J Mech Sci Technol 32, 5533–5540 (2018). https://doi.org/10.1007/s12206-018-1051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-1051-6

Keywords

Navigation