Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 11, pp 5533–5540 | Cite as

Structural design sensitivity analysis of an ultrasonically activated scalpel to improve contact pressure distribution

  • Tae Hyong Kim
  • Ahnryul Choi
  • Mun-Taek Choi
  • Joung Hwan Mun
  • Hyunggun Kim
Article
  • 1 Downloads

Abstract

Ultrasonically activated scalpels (UAS) have excellent hemostatic effects with minimal tissue damage while dissecting tissue. However, inhomogeneous contact pressure (CP) distribution at the sealing site can decrease the quality of sealing strength and cutting. In this study, we evaluated the contact mechanics of UAS using 3D finite element analysis (FEA) simulations, and examined the effects of structural design parameters on the contact mechanics (average CP, standard deviation of CP, maximum CP, and contact area) using experiment-based sensitivity analysis. The largest positive and negative response of the average CP and standard deviation of CP were 0.68-0.85 MPa and 0.81-0.44 MPa, respectively (r = 0.32 and r = -0.73, P < 0.05) when the handle length, jaw cave, and tissue pad height were increased. In conclusion, design parameters (tissue pad height, jaw cave height, jaw cave length, and handle length) of UAS demonstrating high correlation with average CP, standard deviation of CP, maximum CP, and contact area should be considered to attain evenly distributed CP for improved structural optimization of UAS.

Keywords

Ultrasonically activated scalpel Sensitivity analysis Finite element Contact pressure distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. M. Ragab, Six years of evidence–based adult dissection tonsillectomy with ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or ‘cold steel’ dissection, The Journal of Laryngology & Otology, 12 (2012) 1056–1062.CrossRefGoogle Scholar
  2. [2]
    O. Scatton, R. Brustia, G. Belli and J. Pekolj, What kind of energy devices should be used for laparoscopic liver resection? Recommendations from a systematic review, Journal of Hepato–Biliary–Pancreatic Science, 22 (2015) 327–334.Google Scholar
  3. [3]
    B. D. Bertke, P. J. Scoggins, A. L. Welling, C. Chen, S. Kallakuri, J. M. Cavanaugh, J. W. Clymer and J. F. Amaral, Ex vivo and in vivo evaluation of an ultrasonic device for precise dissection, coagulation, and transection, Open Access Surgery, 8 (2014) 1–7.Google Scholar
  4. [4]
    I, Alkatout, T. Schollmeyer, N. A. Hawaldar, N. Sharma and L. Mettler, Principle and safety measures of electrosurgery in laparoscopy, Journal of the Society of Laparoendoscopic Surgeons, 16 (2012) 130–139.CrossRefGoogle Scholar
  5. [5]
    N. Družijanić, Z. Pogorelić, Z. Perko, I. Mrklić and S. Tomić, Comparison of lateral thermal damage of the human peritoneum using monopolar diathermy, Harmonic scalpel and LigaSure, Canadian Journal of Surgery, 55 (2012) 317–321.CrossRefGoogle Scholar
  6. [6]
    J. Milsom, K. Trencheva, S. Monette, R. Pavoor, R. Shukla, J. Ma and T. Sonoda, Evaluation of the safety, efficacy, and versatility of a new surgical energy device (THUNDERBEAT) in comparison with Harmonic ACE, LigaSure V, and EnSeal devices in a porcine model, Journal of Laparoendoscopic & Advanced Surgical Techniques, 22 (2012) 378–386.CrossRefGoogle Scholar
  7. [7]
    S. S. Ching, C. S. Verbeke, S. Homer–Vanniasinkam and M. J. McMahon, Comparison of torsional and linear mode ultrasonic coagulating shears for sealing veins, Journal of Laparoendoscopic & Advanced Surgical Techniques, 18 (2008) 819–824.CrossRefGoogle Scholar
  8. [8]
    H. Cheng, I. Soleas, N. C. Ferko, J. W. Clymer and J. F. Amaral, A systematic review and meta–analysis of Harmonic Focus in thyroidectomy compared to conventional techniques, Thyroid Research, 8 (2015) 1–15.CrossRefGoogle Scholar
  9. [9]
    R. W. Timm, R. M. Asher, K. R. Tellio, A. L. Welling, J. W. Clymer and J. F. Amaral, Sealing vessel up to 7 mm in diameter solely with ultrasonic technology, Medical Devices: Evidence and Research, 7 (2014) 263–271.Google Scholar
  10. [10]
    D. A. Reyes, S. I. Brown, L. Cochrane, L. S. Motta and A. Cuschieri, Thermal fusion: effects and interactions of temperature, compression, and duration variables, Surgical Endoscopy, 26 (2012) 3626–3633.CrossRefGoogle Scholar
  11. [11]
    A. Kirschbaum, F. Rüdell, A. Pehl and D. K. Bartsch, More compression improves sealing effect on larger pulmonary arteries, Journal of Surgical Research, 201 (2016) 202–207.CrossRefGoogle Scholar
  12. [12]
    S. Eick, B. Loudermilk, E. Walberg and M. N. Wente, Rationale, bench testing and in vivo evaluation of a novel 5 mm laparoscopic vessel sealing device with homogeneous pressure distribution in long instrument jaws, Annals of Surgical Innovation and Research, 7 (2013) 1–15.CrossRefGoogle Scholar
  13. [13]
    S. O. Hwang, J. H. Jung, H. Y. Park and W. W. Kim, A prospective, randomized study between the Small Jaw® and the Harmonic Focus® in open thyroidectomy, Otolaryngology–Head and Neck Surgery, 150 (2014) 934–938.CrossRefGoogle Scholar
  14. [14]
    E. G. Chekan, M. A. Davison, D. W. Singleton, J. Z. Mennone and P. Hinoul, Consistency and sealing of advanced bipolar tissue sealers, Medical Devices: Evidence and Research, 8 (2015) 193–199.Google Scholar
  15. [15]
    A. C. Rau, M. Frecker, A. Mathew and E. Pauli, Multifunctional forceps for use in endoscopic surgery–Initial design, prototype, and testing, Journal of Medical Devices, 5 (2011) 1–10.CrossRefGoogle Scholar
  16. [16]
    S. P. DiMaio and S. E. Salcudean, Needle insertion modeling and simulation, IEEE Transactions on Robotics and Automation, 19 (2003) 864–875.CrossRefGoogle Scholar
  17. [17]
    B. Ahn and J. Kim, Efficient soft tissue characterization under large deformations in medical simulations, International Journal of Precision Engineering and Manufacturing, 10 (2009) 115–121.CrossRefGoogle Scholar
  18. [18]
    M. I. Frecker, J. Schadler, S. R. Haluck, K. Culkar and R. Dziedzic, Laparoscopic multifunctional instruments: Design and testing of initial prototypes, Journal of the Society of Laparoendoscopic Surgeons, 9 (2005) 105–112.Google Scholar
  19. [19]
    R. E. Dodde, S. F. Miller, J. D. Geiger and A. J. Shih, Thermal electric finite element analysis and experimental validation of bipolar electrosurgical cautery, Journal of Manufacturing Science and Engineering, 130 (2008) 1–8.CrossRefGoogle Scholar
  20. [20]
    A. E. Anderson, B. J. Ellis and J. A. Weiss, Verification, validation and sensitivity studies in computational biomechanics, Computer Methods in Biomechanics and Biomedical Engineering, 10 (2007) 171–184.CrossRefGoogle Scholar
  21. [21]
    J. A. Weiss, J. C. Gardiner, B. J. Ellis, T. J. Lujan and N. S. Phatak, Three–dimensional finite element modeling of ligaments: Technical aspects, Medical Engineering & Physics, 27 (2005) 845–861.CrossRefGoogle Scholar
  22. [22]
    T. Zander, M. Dreischarf, A. K. Timm, W. W. Baumann and H. Schmidt, Impact of material and morphological parameters on the mechanical response of the lumbar spine–A finite element sensitivity study, Journal of Biomechanics, 53 (2017) 185–190.CrossRefGoogle Scholar
  23. [23]
    I. D. Sener–Yamaner, B. Ekici, A. Sertgoz, E. Yuzbasioglu and M. Ozcan, Finite element analysis on the optimal material choice and cavity design parameters for MOD inlays exposed to different force vectors and magnitudes, Journal of Adhesion Science and Technology, 31 (2017) 8–20.CrossRefGoogle Scholar
  24. [24]
    D. Seehofer, M. Mogl, SF. Boas–Knoop, J. Unger, A. Schirmeier, S. Chopra and D. Eurich, Safety and efficacy of new integrated bipolar and ultrasonic scissors compared to laparoscopic 5–mm sealing and cutting instruments, Surgical Endoscopy, 26 (2012) 2541–2549.CrossRefGoogle Scholar
  25. [25]
    W. W. Cimino, The physics of soft tissue fragmentation using ultrasonic frequency vibration of metal probes, Clinics in Plastic Surgery, 26 (1999) 447–461.Google Scholar
  26. [26]
    B. J. O’Daly, E. Morris, G. P. Gavin, J. M. O’Byrne and G. B. McGuinness, High–power low frequency ultrasound: A review of tissue dissection and ablation in medicine and surgery, Journal of Materials Processing Technology, 200 (2008) 38–58.CrossRefGoogle Scholar
  27. [27]
    M. Bahraminasab, A. Jahan, B. Sahari, M. Arumugam, M. Shamsborhan and M. R. Hassan, Using design of experiment methods for assessing peak contact pressure to material properties of soft tissue in human knee, Journal of Medical Engineering, 2013 (2013) 1–11.CrossRefGoogle Scholar
  28. [28]
    M. Dharme and A. Kuthe, Effect of geometric parameters in the design of customized hip implants, Journal of Medical Engineering, 41 (2017) 429–436.Google Scholar
  29. [29]
    MatWeb, MatWeb Material Property Data, www.matweb. com (2017).Google Scholar
  30. [30]
    D. Foschi, P. Cellerino and F. Corsi, The mechanisms of blood vessel closure in humans by the application of ultrasonic energy, Surgical Endoscopy, 16 (2002) 814–819.CrossRefGoogle Scholar
  31. [31]
    T. A. Spirka, A. Erdemir, S. E. Spaulding, A. Yamane, S. Telfer and P. R. Cavanagh, Simple finite element models for use in the design of therapeutic footwear, Journal of Biomechanics, 47 (2014) 2948–2955.CrossRefGoogle Scholar
  32. [32]
    A. Van Schepdael, A. Carlier and L. Geris, Sensitivity analysis by design of experiment, Springer, Cham (2016).CrossRefGoogle Scholar
  33. [33]
    C. W. Wallwiener, T. K. Rajab, W. Zubke, K. B. Isaacson, M. Enderle, D. Schäller and M. Wallwiener, Thermal conduction, compression, and electrical current–An evaluation of major parameters of electrosurgical vessel sealing in a porcine In Vitro model, Journal of Minimally Invasive Gynecology, 15 (2008) 605–610.CrossRefGoogle Scholar
  34. [34]
    H. Keitel and A. Dimming–Osburg, Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input parameters, Engineering Structure, 32 (2010) 3758–3767.CrossRefGoogle Scholar
  35. [35]
    R. Mantke, W. Halangk, A. Habermann, B. Peters, S. Konrad, M. Guenther and H. Lippert, Efficacy and safety of 5–mm–diameter bipolar and ultrasonic shears for cutting carotid arteries of the hybrid pig, Surgical Endoscopy, 25 (2011) 577–585.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomechatronic EngineeringSungkyunkwan UniversityGyeonggiKorea
  2. 2.Department of Biomedical EngineeringCatholic Kwandong UniversityGangwonKorea
  3. 3.School of Mechanical EngineeringSungkyunkwan UniversityGyeonggiKorea

Personalised recommendations