Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 11, pp 5511–5519 | Cite as

Numerical modeling for multiple combustion modes in turbulent partially premixed jet flames

  • Hyunggeun Ji
  • Minjun Kwon
  • Sewon Kim
  • Yongmo Kim
Article
  • 8 Downloads

Abstract

In this study, the multi-environment probability density function (MEPDF) model has been used to numerically investigate the flame structure under the multiple combustion modes with nearly homogeneous and inhomogeneous inlets. For nearly homogeneous and inhomogeneous cases, the MEPDF approach shows a good conformity with experimental data both conditioned statistics, and unconditioned mean and variance scalars. However, there exist the distinct discrepancies in the edge of reaction zone mainly due to the shortcomings of the RANS-based turbulence model. Predicted results indicate that the used model shows the limitation to describe the combustion processes with the local extinction in the downstream regions. With regard to the predicted conditioned environment scatters, the multienvironment PDF model has shown the capability to precisely simulate the nearly perpendicular shift from the fuel-rich side to the stoichiometric side. Based on the numerical results, detailed discussion was made for the characteristics of turbulent partially premixed jet flames with multiple combustion modes and the shortcomings of present model.

Keywords

Multi-environment probability density function model Turbulent partially premixed flame Multiple combustion mode Inhomogeneous inlets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Yao, Z. Zheng and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Prog. Energy Combust. Sci., 35 (2009) 398–437.CrossRefGoogle Scholar
  2. [2]
    J. E. Dec, Advanced compression–ignition engines—understanding the in–cylinder processes, Proc. Combust. Inst., 32 (2009) 2727–2742.CrossRefGoogle Scholar
  3. [3]
    R. S. Barlow, S. Meares, G. Magnotti, H. Cutcher and A. R. Masri, Local extinction and near–field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets, Combust. Flame, 162 (2015) 3516–3540.CrossRefGoogle Scholar
  4. [4]
    S. Meares and A. R. Masri, A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures, Combust. Flame, 161 (2014) 484–495.CrossRefGoogle Scholar
  5. [5]
    S. Meares, V. N. Prasad, G. Magnotti, R. S. Barlow and A. R. Masri, Stabilization of piloted turbulent flames with inhomogeneous inlets, Proc. Combust. Inst., 35 (2015) 1477–1484.CrossRefGoogle Scholar
  6. [6]
    B. A. Perry, M. E. Mueller and A. R. Masri, A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets, Proc. Combust. Inst., 36 (2017) 1767–1775.CrossRefGoogle Scholar
  7. [7]
    S. Galindo, F. Salehi, M. J. Cleary and A. R. Masri, MMCLES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity, Proc. Combust. Inst., 36 (2017) 1759–1766.CrossRefGoogle Scholar
  8. [8]
    S. B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci., 11 (1985) 119–192.CrossRefGoogle Scholar
  9. [9]
    H. Wang and S. B. Pope, Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame, Proc. Combust. Inst., 33 (2011) 1319–1330.CrossRefGoogle Scholar
  10. [10]
    Y. Yang, H. Wang, S. B. Pope and J. H. Chen, Largeeddy simulation/probability density function modeling of a non–premixed CO/H2 temporally evolving jet flame, Proc. Combust. Inst., 34 (2013) 1241–1249.CrossRefGoogle Scholar
  11. [11]
    J. Kim and S. B. Pope, Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large–eddy simulation/probability density function method, Combust. Theory. Mod., 18 (2014) 388–413.MathSciNetCrossRefGoogle Scholar
  12. [12]
    R. R. Tirunagari and S. B. Pope, An investigation of turbulent premixed counter flow flames using large–eddy simulations and probability density function methods, Combust. Flame, 166 (2016) 229–242.CrossRefGoogle Scholar
  13. [13]
    R. O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, Cambridge (2003).CrossRefGoogle Scholar
  14. [14]
    Q. Tang, W. Zhao, M. Bockelie and R. O. Fox, Multienvironment probability density function method for modelling turbulent combustion using realistic chemical kinetics, Combust. Theory. Mod., 11 (2007) 889–907.CrossRefzbMATHGoogle Scholar
  15. [15]
    V. Raman, H. Pitsch and R. O. Fox, Eulerian transported probability density function sub–filter model for large–eddy simulations of turbulent combustion, Combust. Theory. Mod., 10 (2006) 439–458.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    W. Zhao, C. Zhang and C. Chen, Large eddy simulation of bluff–body stabilized flames using a multi–environment filtered density function model, Proc. of Combust. Inst., 33 (2011) 1347–1353.CrossRefGoogle Scholar
  17. [17]
    W. Zhao, Large–eddy simulation of piloted diffusion flames using multi–environment probability density function models, Proc. of Combust. Inst., 36 (2017) 1705–1712.CrossRefGoogle Scholar
  18. [18]
    L. Valiño, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow Turb. Combust., 60 (1998) 157–172.CrossRefzbMATHGoogle Scholar
  19. [19]
    W. P. Jones and M. Kakhi, PDF modeling of finite–rate chemistry effects in turbulent nonpremixed jet flames, Combust. Flame, 115 (1998) 210–229.CrossRefGoogle Scholar
  20. [20]
    W. P. Jones and V. N. Prasad, Large Eddy simulation of the Sandia Flame Series (D, E and F) using the Eulerian stochastic field method, Combust. Flame, 157 (2010) 1621–1636.Google Scholar
  21. [21]
    L. Wang and R. O. Fox, Comparison of micromixing models for CFD simulation of nanoparticle formation, AIChE J., 50 (2004) 2217–2232.CrossRefGoogle Scholar
  22. [22]
    J. Akroyd, A. J. Smith, L. R. McGlashan and M. Kraft, Numerical investigation of DQMoM–IEM as turbulent reaction closures, Chem. Eng. Sci., 65 (2010) 1915–1924.CrossRefGoogle Scholar
  23. [23]
    J. Akroyd, A. J. Smith, L. R. McGlashan and M. Kraft, Comparison of the stochastic fields method and DQMoMIEM as turbulent reaction closures, Chem. Eng. Sci., 65 (2010) 5429–5441.CrossRefGoogle Scholar
  24. [24]
    J. Jaishree and D. C. Haworth, Comparisons of Lagrangian and Eulerian PDF methods in simulations of nonpremixed turbulent jet flames with moderate–to–strong turbulence–chemistry interactions, Combust. Theory Mod., 16 (2012) 435–463.CrossRefzbMATHGoogle Scholar
  25. [25]
    R. S. Barlow and A. Dreizler, Sandia/TUD piloted CH4/air jet flames, http://www.sandia.gov/TNF/DataArch/FlameD.html/.Google Scholar
  26. [26]
    J. Villermaux and L. Falk, A generalized mixing model for initial contacting of reactive fluids, Chem. Eng. Sci., 49 (1994) 5127–5140.CrossRefGoogle Scholar
  27. [27]
    J. Lee and Y. Kim, DQMOM based PDF transport modeling for turbulent lifted nitrogen–diluted hydrogen jet flame with autoignition, Int. J. Hydro. Energy, 37 (2012) 18498–18508.CrossRefGoogle Scholar
  28. [28]
    J. Lee, S. Jeon and Y. Kim, Multi–environment probability density function approach for turbulent CH4/H2 flames under the MILD combustion condition, Combust. Flame, 162 (2015) 1464–1476.CrossRefGoogle Scholar
  29. [29]
    H. Koo, P. Donde and V. Raman, A quadrature–based LES/transported probability density function approach for modeling supersonic combustion, Proc. Combust. Inst., 33 (2011) 2203–2210.CrossRefGoogle Scholar
  30. [30]
    The open source CFD toolbox (OpenFOAM), http://www. openfoam.org/.Google Scholar
  31. [31]
    S. James, M. S. Anand, M. K. Razdan and S. B. Pope, In situ detailed chemistry calculations in combustor flow analyses, J. Eng. Gas Turbines Power Trans., 123 (2001) 747–756.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hyunggeun Ji
    • 1
  • Minjun Kwon
    • 1
  • Sewon Kim
    • 2
  • Yongmo Kim
    • 1
  1. 1.School of Mechanical EngineeringHanyang UniversitySeoulKorea
  2. 2.KITECHCheonan-SiKorea

Personalised recommendations