Journal of Mechanical Science and Technology

, Volume 32, Issue 11, pp 5501–5509 | Cite as

Effect of additional diluents on flame propagation speed and markstein length in outwardly propagating premixed methane/ethylene–air flames

  • Hee June Kim
  • Kyuho Van
  • Kee Man Lee
  • Dae Keun Lee
  • Young Tae Guahk
  • Sang In Keel
  • Jeong ParkEmail author


An experimental study was conducted to understand the effects of additional diluents (CO2 and He) on unstretched flame speed and Markstein length in outwardly propagating spherical premixed CH4/C2H4–air flames at normal temperatures and elevated pressures of up to 0.3 MPa. Laminar burning velocities were measured and compared with predicted ones using reliable reaction mechanisms. The data were first validated by testing linear and nonlinear extrapolation models for premixed methane–air flames. Unstretched laminar burning velocities were presented for premixed methane/ethylene–air flames diluted with CO2 and He on the basis of the optimized range of flame radius and extrapolation model. Three kinetic mechanisms were evaluated and compared with the measured data, and findings showed that Sung Mech was best fitted to the current unstretched flame speeds. Experimentally determined Markstein lengths were compared with theoretically predicted ones by considering the definitions of Lewis (heat-release-weighted, diffusion-based, and volumeweighted) and Zel’dovich numbers (based on a temperature-dependent one). The theoretical Markstein lengths based on a temperaturedependent Zel’dovich number and a heat-release-weighted effective Lewis number agreed best with the experimental data. The capability in predicting theoretical Markstein length with the model of Matalon was better than that with the model of Chen.


Error analysis Extrapolation model Markstein length Range of monitoring flame radius Unstretched flame speed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Lafay, B. Renou, G. Cabot and A. Boukhalfa, Experimental and numerical investigation of the effect of H2 enrichment on laminar methane–air flame thickness, Combust. Flame, 153 (2008) 541–561.CrossRefGoogle Scholar
  2. [2]
    J. S. Kim, J. Park, O. B. Kwon, E. J. Lee, J. H. Yun and S. I. Keel, Preferential diffusion effects in opposed–flow diffusion flame with blended fuels of CH4 and H2, Int. J. Hydrogen Energy, 33 (2008) 842–850.Google Scholar
  3. [3]
    J. S. Kim, J. Park, O. B. Kwon, D. S. Bae, J. H. Yun and S. I. Keel, A study on flame structure and extinction in downstream interaction between lean premixed CH4–air and (50% H2 + 50% CO) syngas–air flames, Int. J. Hydrogen Energy, 36 (2011) 5717–5728.CrossRefGoogle Scholar
  4. [4]
    J. S. Ha, C. W. Moon, J. Park, J. S. Kim, J. H. Yun and S. I. Keel, A study on flame interaction between methane/air and nitrogen–diluted hydrogen–air premixed flames, Int. J. Hydrogen Energy, 35 (2010) 6992–7001.CrossRefGoogle Scholar
  5. [5]
    F. H. V. Coppens, D. J. Ruyck and A. A. Konnov, The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2, Combust. Flame, 149 (2007) 409–417.CrossRefGoogle Scholar
  6. [6]
    H. S. Guo, G. J. Smallwood and O. L. Gulder, The effect of reformate gas enrichment on extinction limits and NOX formation in counterflow CH4/air premixed flames, Proc. Combust. Inst., 31 (2007) 1197–1204.CrossRefGoogle Scholar
  7. [7]
    J. Scott, U. S. chemical investment linked to shale gas reaches $100 billion, American Chemical Council, February, USA (2014), <–news–releases/US–Chemical–Investment–Linked–to–Shale–Gas–Reaches–100–Billion.html>.Google Scholar
  8. [8]
    W. Liu, A. P. Kelly and C. K. Law, Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene, Combust. Flame, 157 (2010) 1027–1036.CrossRefGoogle Scholar
  9. [9]
    C. G. Fotache, T. G. Kreutz and C. K. Law, Ignition of counterflowing methane versus heated air under reduced and elevated pressures, Combust. Flame, 108 (1997) 442–470.CrossRefGoogle Scholar
  10. [10]
    J. L. Delfau, J. Biet, M. Idir, L. Pillier and C. Vocelle, Experimental and numerical study of premixed, lean ethylene flames, Proc. Combust. Inst., 31 (2007) 357–365.CrossRefGoogle Scholar
  11. [11]
    S. G. Davis and C. K. Law, Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons, Combust. Sci. Technol., 140 (1998) 427–449.CrossRefGoogle Scholar
  12. [12]
    Z. Chen, On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure, Combust Flame, 162 (2015) 2442–2453.CrossRefGoogle Scholar
  13. [13]
    S. C. Taylor, Burning velocity and the influence of flame stretch, Ph.D. Thesis, University of Leeds (1991).Google Scholar
  14. [14]
    F. Halter, T. Tahtouh and C. Mounaïm–Rousselle, Nonlinear effects of stretch on the flame front propagation, Combust. Flame, 157 (2010) 1825–1832.CrossRefGoogle Scholar
  15. [15]
    G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissianki and Z. Qin, GRIMECH 3.0, < mech/> (1999).Google Scholar
  16. [16]
    W. S. Song, S. W. Jung, J. Park, O. B. Kwon, Y. J. Kim, T. H. Kim, J. H. Yun and S. I. Keel, Effects of syngas addition on flame propagation and stability in outwardly propagating spherical dimethyl ether–air premixed flames, Int. J. Hydrogen Energy, 38 (2013) 14102–14114.CrossRefGoogle Scholar
  17. [17]
    R. C. Eschenbach and J. T. Agnew, Use of the constantvolume bomb technique for measuring burning velocity, Combust. Flame, 2 (1958) 273–285.CrossRefGoogle Scholar
  18. [18]
    D. Bradley, R. A. Hicks, M. Lawes, C. G. W. Sheppard and R. Wooley, The measurement of laminar burning velocities and markstein numbers for iso–octane–air and isooctane–n–heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combust. Flame, 115 (1998) 126–144.CrossRefGoogle Scholar
  19. [19]
    M. P. Burke, Z. Chen, Y. Ju and F. L. Dryer, Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames, Combust. Flame, 156 (2009) 771–779.CrossRefGoogle Scholar
  20. [20]
    Y. Ai, Z. Zhou, Z. Chen and W. Kong, Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures, Fuel, 137 (2014) 339–345.CrossRefGoogle Scholar
  21. [21]
    S. D. Tse, D. L. Zhu and C. K. Law, Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres, Proc. Combust. Inst., 28 (2000) 1793–1800.CrossRefGoogle Scholar
  22. [22]
    Z. Chen, X. Qin, Y. Ju, Z. Zhao, M. Chaos and F. L. Dryer, High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures, Proc. Combust. Inst., 31 (2007) 1215–1222.CrossRefGoogle Scholar
  23. [23]
    X. J. Gu, M. Z. Haq, M. Lawes and R. Woolley, Laminar burning velocity and Markstein lengths of methane–air mixtures, Combust. Flame, 121 (2000) 41–58.CrossRefGoogle Scholar
  24. [24]
    G. Rozenchan, D. L. Zhu, C. K. Law and S. D. Tse, Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm, Proc. Combust. Inst., 29 (2003) 1461–1470.CrossRefGoogle Scholar
  25. [25]
    F. Halter, C. Chauveau, N. Djebaili–Chaumeix and I. Gokalp, Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures, Proc. Combust. Inst., 30 (2005) 201–208.CrossRefGoogle Scholar
  26. [26]
    C. K. Law and C. J. Sung, Structure, aerodynamics, and geometry of premixed flamelets, Prog. Energy Combust. Sci., 26 (2000) 459–505.CrossRefGoogle Scholar
  27. [27]
    G. H. Markstein, Experimental and theoretical studies of flame–front stability, J. Aeronaut. Sci., 18 (1951) 199–209.CrossRefGoogle Scholar
  28. [28]
    M. L. Frankel and G. I. Sivashinsky, On effects due to thermal expansion and Lewis number in spherical flame propagation, Combust. Sci. Tech., 31 (1983) 131–138.CrossRefGoogle Scholar
  29. [29]
    P. D. Ronney and G. I. Sivashinsky, A theoretical study of propagation and extinction of nonsteady spherical flame fronts, SIAM J. Appl. Math., 49 (1989) 1029–1046.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J. K. Bechtold, C. Cui and M. Matalon, The role of radiative losses in self–extinguishing and self–wrinkling flames, Proc. Combust. Inst., 30 (2005) 177–184.CrossRefGoogle Scholar
  31. [31]
    A. P. Kelley and C. K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame, 156 (2009) 1844–1851.CrossRefGoogle Scholar
  32. [32]
    M. Matalon and B. J. Matkowsky, Flames as gasdynamic discontinuities, J. Fluid Mech., 124 (1982) 239–259.CrossRefzbMATHGoogle Scholar
  33. [33]
    R. Addabbo, J. K. Bechtold and M. Matalon, Wrinkling of spherically expanding flames, Proc. Combust. Int., 29 (2002) 1527–1535.CrossRefGoogle Scholar
  34. [34]
    M. Matalon, Intrinsic flame instabilities in premixed and nonpremixed combustion, Annu. Rev. Fluid Mech., 39 (2007) 163–191.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    W. S. Jung, J. Park, O. B. Kwon, Y. J. Kim, T. H. Kim and S. I. Keel, Effects of CO2 addition on flame extinction in interacting H2–air and CO–air premixed flames, Fuel, 116 (2014) 69–78.CrossRefGoogle Scholar
  36. [36]
    Z. Chen and Y. Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. Theory. Modelling, 11 (2007) 427–453.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    F. N. Egolfopulos and C. K. Law, Chain mechanisms in the overall reaction orders in laminar flame propagation, Combust. Flame, 80 (1990) 7–16.CrossRefGoogle Scholar
  38. [38]
    C. K. Law, G. Jomaas and J. K. Bechtold, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment, Proc. Combust. Inst., 30 (2005) 159–167.CrossRefGoogle Scholar
  39. [39]
    T. M. Vu, W. S. Song and J. Park, Measurements of propagation speeds and flame instabilities in biomass derived gas–air premixed flames, Int. J. Hydrogen Energy, 36 (2011) 12058–12067.CrossRefGoogle Scholar
  40. [40]
    T. M. Vu, J. Park, J. S. Kim and O. B. Kwon, Experimental study on cellular instabilities in hydrocarbon/hydrogen/car–bon monoxide–air premixed flames, Int. J. Hydrogen Energy, 36 (2011) 6914–6924.CrossRefGoogle Scholar
  41. [41]
    T. M. Vu, J. Park, O. B. Kwon, J. H. Yun and S. I. Keel, Effects of diluents on cellular instabilities in outwardly propagating spherical syngas–air premixed flames, Int. J. Hydrogen Energy, 35 (2010) 3868–3880.CrossRefGoogle Scholar
  42. [42]
    S. P. R. Muppala, M. Nakahara, N. K. Aluri, H. Kido, J. X. Wen and M. V. Papalexandris, Experimental and analytical investigation of the turbulent burning velocity of twocomponent fuel mixtures of hydrogen, methane and propane, Int. J. Hydrogen Energy, 34 (2009) 9258–9265.CrossRefGoogle Scholar
  43. [43]
    N. Bouvet, F. Halter, C. Chauveau and Y. Yoon, On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures, Int. J. Hydrogen Energy, 38 (2013) 5949–5960.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hee June Kim
    • 1
  • Kyuho Van
    • 1
  • Kee Man Lee
    • 2
  • Dae Keun Lee
    • 3
  • Young Tae Guahk
    • 3
  • Sang In Keel
    • 4
  • Jeong Park
    • 1
    Email author
  1. 1.School of Mechanical EngineeringPukyong National UniversityBusanKorea
  2. 2.Dept. of Aerospace EngineeringSunchon National UniversitySunchonKorea
  3. 3.Energy Efficiency and Materials Research DivisionKorea Institute of Energy ResearchDaejeonKorea
  4. 4.Environment & Energy Research DivisionKorea Institute of Machinery and MaterialsDaejeonKorea

Personalised recommendations