Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 11, pp 5223–5231 | Cite as

Dynamic analysis of a flexure-based compliant stage

  • Yunsong Du
  • Tiemin Li
  • Guohua Gao
Article
  • 3 Downloads

Abstract

This paper presents the dynamic analysis of a flexure-based compliant stage. The dynamic model is first obtained, after which the equivalent masses of the flexure hinge, including the axial equivalent mass, the bending equivalent mass, and the shear equivalent mass, are derived. According to this method, the equivalent mass components of the proposed stage are derived by accumulating those of the output platform, input platform, and flexure hinges. Finally, to verify the validity of the proposed method, the first two resonant frequencies and the corresponding mode shapes are analyzed by using finite element analysis (FEA). An experimental platform is fabricated, and experimental results and FEA values appear to be in accordance with the theoretical calculations. This result demonstrates that the dynamic model and equivalent mass are accurate. The dynamic model provides an effective method for calculating equivalent masses, and dynamic characteristics can be precisely estimated from the corresponding analytical models.

Keywords

Flexure hinge Flexure-based compliant stage Resonant frequency Equivalent mass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. T. Elgammal, M. Fanni and A. M. Mohamed, Design and analysis of a novel 3d decoupled manipulator based on compliant pantograph for micromanipulation, J. Intell. Robot. Syst., 87 (1) (2017) 43–57.CrossRefGoogle Scholar
  2. [2]
    J. J. Yu, S. Z. Li, H. J. Su and M. L. Culpepper, Screw theory based methodology for the deterministic type synthesis of flexure mechanisms, J. Mech. Robot., 3 (3) (2011) 031008.CrossRefGoogle Scholar
  3. [3]
    L. Clark, B. Shirinzadeh, J. Pinskier, Y. L. Tian and D. W. Zhang, Topology optimization of bridge input structures with maximal amplification for design of flexure mechanisms, Mech. Mach. Theory., 122 (2018) 113–131.CrossRefGoogle Scholar
  4. [4]
    K. S. Yoo and S. Y. Han, Topology optimum design of compliant mechanisms using modified ant colony optimization, J. Mech. Sci. Technol., 29 (8) (2015) 3321–3327.CrossRefGoogle Scholar
  5. [5]
    M. Liu, X. M. Zhang and S. Fatikow, Design and analysis of a multi–notched flexure hinge for compliant mechanisms, Precis. Eng., 48 (2017) 292–304.CrossRefGoogle Scholar
  6. [6]
    P. Y. Wang and Q. S. Xu, Design of a flexure–based constant–force XY precision positioning stage, Mech. Mach. Theory., 108 (2017) 1–13.CrossRefGoogle Scholar
  7. [7]
    T. Tuma, W. Haeberle, H. Rothuizen, J. Lygeros, A. Pantazi and A. Sebastian, Dual–stage nanopositioning for high–speed scanning probe microscopy, IEEE/ASME Transactions on Mechatronics, 19 (3) (2014) 1035–1045.CrossRefGoogle Scholar
  8. [8]
    Q. S. Xu, Design and development of a compact flexurebased XY precision positioning system with centimeter range, IEEE Trans. Ind. Electron., 61 (2) (2014) 893–903.CrossRefGoogle Scholar
  9. [9]
    I. Ivanov and B. Corves, Fatigue testing of flexure hinges for the purpose of the development of a high–precision micro manipulator, Mech. Sci., 5 (2) (2014) 59–66.CrossRefGoogle Scholar
  10. [10]
    J. J. Yu, Y. Xie, Z. G. Li and G. B. Hao, Design and experimental testing of an improved large–range decoupled XY compliant parallel micromanipulator, J. Mech. Robot., 7 (4) (2015) 044503.CrossRefGoogle Scholar
  11. [11]
    Y. M. Li and Q. S. Xu, Design and analysis of a totally decoupled flexure–based XY parallel micromanipulator, IEEE Trans. Robot., 25 (3) (2009) 645–657.CrossRefGoogle Scholar
  12. [12]
    H. H. Pham and I. M. Chen, Stiffness modeling of flexure parallel mechanism, Precis. Eng., 29 (4) (2005) 467–478.CrossRefGoogle Scholar
  13. [13]
    K. H. Cai, Y. L. Tian, F. J. Wang, D. W. Zhang, X. P. Liu and B. Shirinzadeh, Design and control of a 6–degree–offreedom precision positioning system, Robot. Comput.–Integr. Manuf., 44 (2017) 77–96.CrossRefGoogle Scholar
  14. [14]
    G. B. Hao, Towards the design of monolithic decoupled XYZ compliant parallel mechanisms for multi–function applications, Mech. Sci., 4 (2013) 291–302.CrossRefGoogle Scholar
  15. [15]
    C. M. Liang, F. J. Wang, B. C. Shi, Z. C. Hou, K. H. Zhou, Y. L. Tian and D. W. Zhang, Design and control of a novel asymmetrical piezoelectric actuated micro–gripper for micromanipulation, Sens. Actuator A–Phys., 269 (2018) 227–237.CrossRefGoogle Scholar
  16. [16]
    P. Liu, P. Yan and Z. Zhang, Design and analysis of an XY parallel nano–positioner supporting large–stroke servomechanism, Proceedings of the Institution of Mechanical Engineers, Proc. Inst. Mech. Eng. Part C–J. Eng., 229 (2) (2015) 364–376.CrossRefGoogle Scholar
  17. [17]
    Z. X. Shao, S. L. Wu, J. G. Wu and H. Y. Fu, A novel 5–DOF high–precision compliant parallel mechanism for largeaperture grating tiling, Mech. Sci., 8 (2) (2017) 349.CrossRefGoogle Scholar
  18. [18]
    R. Kurniawan, T. J. Ko, C. P. Li, S. T. Kumaran, G. Kiswanto, P. Guo and K. F. Ehmann, Development of a twofrequency, elliptical–vibration texturing device for surface texturing, J. Mech. Sci. Technol., 31 (7) (2017) 3465–3473.CrossRefGoogle Scholar
  19. [19]
    Y. D. Qin, Y. L. Tian and D. W. Zhang, Design and dynamic modeling of a 2–DOF decoupled flexure–based mechanism, Chin. J. Mech. Eng., 25 (4) (2012) 688–696.CrossRefGoogle Scholar
  20. [20]
    Y. M. Li, J. M. Huang and H. Tang, A compliant parallel XY micromotion stage with complete kinematic decoupling, IEEE Trans. Autom. Sci. Eng., 9 (3) (2012) 538–553.CrossRefGoogle Scholar
  21. [21]
    S. Polit and J. Y. Dong, Development of a high–bandwidth XY nanopositioning stage for high–rate micro–/nanomanufacturing, IEEE/ASME Transactions on Mechatronics, 16 (4) (2011) 724–733.CrossRefGoogle Scholar
  22. [22]
    V. Hassani and T. Tjahjowidodo, Dynamic modeling of 3–DOF pyramidal–shaped piezo–driven mechanism, Mech. Mach. Theory., 70 (2013) 225–245.CrossRefGoogle Scholar
  23. [23]
    H. Kim, J. Kim, D. Ahn and D. Gweon, Development of a nano–precision 3–DOF vertical positioning system with a flexure hinge, IEEE Trans. Nanotechnol., 12 (2) (2013) 234–245.CrossRefGoogle Scholar
  24. [24]
    Y. S. Du, T. M. Li, Yao. Jiang and H. T. Wang, Design and analysis of a 2–degree–of–freedom flexure–based micro–motion stage, Adv. Mech. Eng., 8 (3) (2016) 1687814016638301.CrossRefGoogle Scholar
  25. [25]
    N. Lobontiu, Compliant mechanisms: Design of flexure hinges, CRC Press (2002) 207–251.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanical Engineering and Applied Electronics TechnologyBeijing University of TechnologyBeijingChina
  2. 2.Manufacturing Engineering Institute, Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations