Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 7, pp 3407–3417 | Cite as

Explicit input link rotatability analysis of Watt six-link mechanisms

  • Gunesh R. Gogate
Article

Abstract

This paper presents explicit input link rotatability analysis of Watt six-link mechanisms. Analysis is presented for all slider-crank based Watt mechanisms having up to three prismatic joints, and for four-bar based Watt mechanisms having two prismatic joints. Apart from being of theoretical importance, the presented analysis is suitable for implementation within an optimization scheme and is computationally efficient. When incorporated within an evolutionary optimization algorithm, it can also be used to effectively handle the rotatability constraint.

Keywords

Grashof criterion Input-link rotatability Six-link Watt mechanisms Synthesis of mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Mirth and T. R. Chase, Circuit analysis of Watt chain six-bar mechanisms, ASME Journal of Mechanical Design, 115 (2) (1993) 214–222.CrossRefGoogle Scholar
  2. [2]
    R. L. Norton, Design of machinery, Tata McGraw-Hill, New Delhi (2004).Google Scholar
  3. [3]
    A. G. Erdman and G. N. Sandor, Mechanism design: Analysis and synthesis, Prentice-Hall of India, 1 (1988).Google Scholar
  4. [4]
    R. Sancibrian, P. García, F. Viadero and A. Fernández, A general procedure based on exact gradient determination in dimensional synthesis of planar mechanisms, Mechanism and Machine Theory, 41 (2) (2006) 212–229.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. C. Oliva and E. D. Goodman, Simultaneous type and dimensional synthesis of planar 1DOF mechanisms using evolutionary search and convertible agents, ASME Journal of Mechanisms and Robotics, 2 (3) (2010) 031001–1 to 031001–9.CrossRefGoogle Scholar
  6. [6]
    N. Diab and A. Smaili, Optimum exact/approximate point synthesis of planar mechanisms, Mechanism and Machine Theory, 43 (12) (2008) 1610–1624.CrossRefMATHGoogle Scholar
  7. [7]
    M. Da Lio, V. Cossalter and R. Lot, On the use of natural coordinates in optimal synthesis of mechanisms, Mechanism and Machine Theory, 35 (10) (2000) 1367–1389.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. R. Bulatovic and S. R. Ðorðevic, Optimal synthesis of a path generator six-bar linkage, Journal of Mechanical Science and Technology, 26 (12) (2012) 4027–4040.CrossRefGoogle Scholar
  9. [9]
    A. Midha, Z. L. Zhao and I. Her, Mobility conditions for planar linkages using triangle inequality and graphical interpretation, ASME Journal of Mechanisms Transmissions and Automation in Design, 107 (3) (1985) 394–399.CrossRefGoogle Scholar
  10. [10]
    S. Krishnamurty and D. A. Turcic, A general method of determining and eliminating branching in planar multiloop mechanisms, ASME Journal of Mechanisms Transmissions and Automation in Design, 110 (4) (1988) 414–422.CrossRefGoogle Scholar
  11. [11]
    S. Krishnamurty and D. A. Turcic, Branching determination in nondyadic planar multiloop mechanisms, ASME Journal of Mechanical Design, 114 (2) (1992) 245–250.CrossRefGoogle Scholar
  12. [12]
    T. R. Chase and J. A. Mirth, Circuits and branches of single-degree-of-freedom planar linkages, ASME Journal of Mechanical Design, 115 (2) (1993) 223–230.CrossRefGoogle Scholar
  13. [13]
    K. L. Ting and X. Dou, Classification and branch identification of Stephenson six-bar chains, Mechanism and Machine Theory, 31 (3) (1996) 283–295.CrossRefGoogle Scholar
  14. [14]
    D. E. Foster and R. J. Cipra, Assembly configurations and branches of planar single-input dyadic mechanisms, ASME Journal of Mechanical Design, 120 (3) (1998) 381–386.CrossRefGoogle Scholar
  15. [15]
    K. L. Ting, On the input joint rotation space and mobility of linkages, ASME Journal of Mechanical Design, 130 (9) (2008) 092303–1 to 092303–12.CrossRefGoogle Scholar
  16. [16]
    K. L. Ting, C. Xue, J. Wang and K. R. Currie, Stretch rotation and complete mobility identification of Watt six-bar chains, Mechanism and Machine Theory, 44 (10) (2009) 1877–1886.CrossRefMATHGoogle Scholar
  17. [17]
    K. L. Ting, J. Wang, C. Xue and K. R. Currie, Full rotatability and singularity of six-bar and geared five-bar linkages, ASME Journal of Mechanisms and Robotics, 2 (1) (2010) 011011–1 to 011011–9.CrossRefGoogle Scholar
  18. [18]
    J. Wang, K. L. Ting and C. Xue, Discriminant method for the mobility identification of single degree-of-freedom double-loop linkages, Mechanism and Machine Theory, 45 (5) (2010) 740–755.CrossRefMATHGoogle Scholar
  19. [19]
    G. Shukla and A. K. Mallik, Detection of a crank in six-link planar mechanisms, Mechanism and Machine Theory, 35 (7) (2000) 911–926.CrossRefMATHGoogle Scholar
  20. [20]
    G. R. Gogate, Input link rotatability analysis of four-bar based Watt mechanisms with revolute and prismatic joints, Mechanism and Machine Theory, 79 (2014) 94–108.CrossRefGoogle Scholar
  21. [21]
    P. S. Shiakolas, D. Koladiya and J. Kebrle, On the optimum synthesis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique, Mechanism and Machine Theory, 40 (3) (2005) 319–335.CrossRefMATHGoogle Scholar
  22. [22]
    J. A. Cabrera, A. Ortiz, F. Nadal and J. J. Castillo, An evolutionary algorithm for path synthesis of mechanisms, Mechanism and Machine Theory, 46 (2) (2011) 127–141.CrossRefMATHGoogle Scholar
  23. [23]
    G. R. Gogate and S. B. Matekar, Unified synthesis of Watt-I six-link mechanisms using evolutionary optimization, Journal of Mechanical Science and Technology, 28 (8) (2014) 3075–3086.CrossRefGoogle Scholar
  24. [24]
    C. A. Coello Coello, Theoretical and numerical constrainthandling techniques used with evolutionary algorithms: A survey of the state of the art, Computer Methods in Applied Mechanics and Engineering, 191 (2002) 1245–1287.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Y. G. Woldesenbet, B. G. Tessema and G. G. Yen, Constraint handling in multi-objective evolutionary optimization, Proceedings of IEEE Congress on Evolutionary Optimization (CEC 2007) 3077–3084.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.82/1B/3, ‘Malhar’Near Gandhi Training CollegeAranyeshwar, Sahakarnagar, PuneIndia

Personalised recommendations