Advertisement

Recent advances in finite element modeling of the human cervical spine

  • Yoon Hyuk Kim
  • Batbayar Khuyagbaatar
  • Kyungsoo Kim
Invited Review Paper
  • 211 Downloads

Abstract

The human cervical spine is a complex structure that is the most frequently injured site among all spinal injuries. Therefore, understanding of the cervical spine injury and dysfunction, and also biomechanical response to external stimuli is important. Finite element (FE) modeling can help researchers to access the internal stresses and strains in the bones, ligaments and soft tissues more realistically, and it has been widely adopted for spine biomechanics research. Although in recent years numerous techniques have been developed, there are no recent literature reviews on FE models of the cervical spine. Our objective was to present recent advances in FE modeling of the human cervical spine in terms of component modeling, material properties, and validation procedures. Model applications and further development are also discussed. The integration of new technologies will allow us to generate more accurate and comprehensive model of the cervical spine, which can increase efficiency and model applicability. Finally, the FE modeling can help to facilitate diagnosis, treatment, and prevention technologies for cervical spine injuries.

Keywords

Cervical spine Finite element modeling Material properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Q. H. Zhang, E. C. Teo and H. W. Ng, Development and validation of a C0–C7 FE complex for biomechanical study, J. of Biomechanical Engineering, 127 (5) (2005) 729–735.CrossRefGoogle Scholar
  2. [2]
    T. Mustafy, K. Moglo, S. Adeeb and M. El-Rich, Injury mechanisms of the ligamentous cervical C2–C3 functional spinal unit to complex loading modes: finite element study, J. of the Mechanical Behavior of Biomedical Materials, 53 (2016) 384–396.CrossRefGoogle Scholar
  3. [3]
    M. M. Panjabi, Cervical spine models for biomechanical research, Spine, 23 (24) (1998) 2684–2699.CrossRefGoogle Scholar
  4. [4]
    Q. H. Zhang and E. C. Teo, Finite element application in implant research for treatment of lumbar degenerative disc disease, Medical Engineering & Physics, 30 (10) (2008) 1246–1256.CrossRefGoogle Scholar
  5. [5]
    Y. C. Deng and W. Goldsmith, Response of a human head/neck/upper-torso replica to dynamic loading-I. Physical model, J. of Biomechanics, 20 (5) (1987) 471–486.CrossRefGoogle Scholar
  6. [6]
    Z. Luo and W. Goldsmith, Reaction of a human head/neck/torso system to shock, J. of Biomechanics, 24 (7) (1991) 499–510.CrossRefGoogle Scholar
  7. [7]
    J. L. Williams and T. B. Belytschko, A three-dimensional model of the human cervical spine for impact simulation, J. of Biomechanical Engineering, 105 (4) (1983) 321–31.CrossRefGoogle Scholar
  8. [8]
    T. Merrill, W. Goldsmith and Y. C. Deng, Threedimensional response of a lumped parameter head-neck model due to impact and impulsive loading, J. of Biomechanics, 17 (2) (1984) 81–95.CrossRefGoogle Scholar
  9. [9]
    T. Saito, T. Yamamuro, J. Shikata, M. Oka and S. Tsutsumi, analysis and prevention of spinal column deformity following cervical laminectomy i: Pathogenetic analysis of postlaminectomy deformities, Spine, 16 (5) (1991) 494–502.CrossRefGoogle Scholar
  10. [10]
    N. Yoganandan, S. C. Kumaresan, L. Voo, F. A. Pintar and S. J. Larson, Finite element modeling of the C4-C6 cervical spine unit, Medical Engineering & Physics, 18 (7) (1996) 569–574.CrossRefGoogle Scholar
  11. [11]
    L. M. Voo, S. Kumaresan, N. Yoganandan, F. A. Pintar and J. F. Cusick, Finite element analysis of cervical facetectomy, Spine, 22 (9) (1997) 964–969.CrossRefGoogle Scholar
  12. [12]
    S. Kumaresan, N. Yoganandan and F. A. Pintar, Finite element modeling approaches of human cervical spine facet joint capsule, J. of Biomechanics, 31 (4) (1998) 371–376.CrossRefGoogle Scholar
  13. [13]
    S. Kumaresan, N. Yoganandan and F. A. Pintar, Finite element analysis of the cervical spine: A material property sensitivity study, Clinical Biomechanics, 14 (1) (1999) 41–53.CrossRefGoogle Scholar
  14. [14]
    N. Maurel, F. Lavaste and W. Skalli, A three-dimensional parameterized finite element model of the lower cervical spine, study of the influence of the posterior articular facets, J. of Biomechanics, 30 (9) (1997) 921–931.CrossRefGoogle Scholar
  15. [15]
    J. D. Clausen, V. K. Goel, V. C. Traynelis and J. Scifert, Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: quantification using a finite element model of the C5-C6 segment, J. of Orthopaedic Research, 15 (3) (1997) 342–347.CrossRefGoogle Scholar
  16. [16]
    E. C. Teo and H. W. Ng, Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method, Medical Engineering & Physics, 23 (3) (2001) 155–164.CrossRefGoogle Scholar
  17. [17]
    V. K. Goel and J. D. Clausen, Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach, Spine, 23 (6) (1998) 684–691.CrossRefGoogle Scholar
  18. [18]
    N. Hong-Wan, T. Ee-Chon and Z. Qing-Hang, Biomechanical effects of C2–C7 intersegmental stability due to laminectomy with unilateral and bilateral facetectomy, Spine, 29 (16) (2004) 1737–1745.CrossRefGoogle Scholar
  19. [19]
    S. K. Ha, Finite element modeling of multi-level cervical spinal segments (C3-C6) and biomechanical analysis of an elastomer-type prosthetic disc, Medical Engineering & Physics, 28 (6) (2006) 534–541.CrossRefGoogle Scholar
  20. [20]
    J. A. Wheeldon, B. D. Stemper, N. Yoganandan and F. A. Pintar, Validation of a finite element model of the young normal lower cervical spine, Annals of Biomedical Engineering, 36 (9) (2008) 1458–1469.CrossRefGoogle Scholar
  21. [21]
    A. P. del Palomar, B. Calvo and M. Doblaré, An accurate finite element model of the cervical spine under quasi-static loading, J. of Biomechanics, 41 (3) (2008) 523–531.CrossRefGoogle Scholar
  22. [22]
    N. Kallemeyn, A. Gandhi, S. Kode, K. Shivanna, J. Smucker and N. Grosland, Validation of a C2–C7 cervical spine finite element model using specimen-specific flexibility data, Medical Engineering & Physics, 32 (5) (2010) 482–489.CrossRefGoogle Scholar
  23. [23]
    M. B. Panzer, J. B. Fice and D. S. Cronin, Cervical spine response in frontal crash, Medical Engineering & Physics, 33 (9) (2011) 1147–1159.CrossRefGoogle Scholar
  24. [24]
    J. G. Zhang, F. Wang, R. Zhou and Q. Xue, A threedimensional finite element model of the cervical spine: an investigation of whiplash injury, Medical & Biological Engineering & Computing, 49 (2) (2011) 193–201.CrossRefGoogle Scholar
  25. [25]
    S. H. Lee, Y. J. Im, K. T. Kim, Y. H. Kim, W. M. Park and K. Kim, Comparison of cervical spine biomechanics after fixed-and mobile-core artificial disc replacement: A finite element analysis, Spine, 36 (9) (2011) 700–708.CrossRefGoogle Scholar
  26. [26]
    L. Dong, G. Li, H. Mao, S. Marek and K. H. Yang, Development and validation of a 10-year-old child ligamentous cervical spine finite element model, Annals of BioMedical Engineering, 41 (12) (2013) 2538–2552.CrossRefGoogle Scholar
  27. [27]
    D. U. Erbulut, I. Zafarparandeh, I. Lazoglu and A. F. Ozer, Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability, Medical Engineering & Physics, 36 (7) (2014) 915–921.CrossRefGoogle Scholar
  28. [28]
    J. Östh, K. Brolin, M. Y. Svensson and A. Linder, A female ligamentous cervical spine finite element model validated for physiological loads, J. of Biomechanical Engineering, 138 (6) (2016) 061005.CrossRefGoogle Scholar
  29. [29]
    Z. Wang, H. Zhao, J. M. Liu, L. W. Tan, P. Liu and J. H. Zhao, Resection or degeneration of uncovertebral joints altered the segmental kinematics and load-sharing pattern of subaxial cervical spine: A biomechanical investigation using a C2–T1 finite element model, J. of Biomechanics, 49 (13) (2016) 2854–2862.CrossRefGoogle Scholar
  30. [30]
    J. Scifert, K. Totoribe, V. Goel and J. Huntzinger, Spinal cord mechanics during flexion and extension of the cervical spine: A finite element study, Pain Physician, 5 (4) (2002) 394–400.Google Scholar
  31. [31]
    C. Y. Greaves, M. S. Gadala and T. R. Oxland, A threedimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms, Annals of Biomedical Engineering, 36 (3) (2008) 396–405.CrossRefGoogle Scholar
  32. [32]
    B. Khuyagbaatar, K. Kim, W. M. Park and Y. H. Kim, Biomechanical behaviors in three types of spinal cord injury mechanisms, J. of Biomechanical Engineering, 138 (8) (2016) 081003.CrossRefGoogle Scholar
  33. [33]
    B. Khuyagbaatar, K. Kim, W. M. Park and Y. H. Kim, Effect of posterior decompression on biomechanical parameters of the spinal cord in cervical ossification of the posterior longitudinal ligament, Proceedings of the Institution of Mechanical Engineers, Part H: J. of Engineering in Medicine, 230 (6) (2016) 545–552.CrossRefGoogle Scholar
  34. [34]
    B. Khuyagbaatar, K. Kim, W. M. Park and Y. H. Kim, Biomechanical investigation of post-operative C5 palsy due to ossification of the posterior longitudinal ligament in different types of cervical spinal alignment, J. of Biomechanics, 57 (2017) 54–61.CrossRefGoogle Scholar
  35. [35]
    M. de Jager, Mathematical modeling of the human cervical spine: A survey of the literature, IRCOBI Conference on the Biomechanics of Impacts (1993) 213–227.Google Scholar
  36. [36]
    D. F. Huelke and G. S. Nusholtz, Cervical spine biomechanics: a review of the literature, J. of Orthopaedic Research, 4 (2) (1996) 232–245.CrossRefGoogle Scholar
  37. [37]
    N. Yoganandan, S. Kumaresan, L. Voo and F. A. Pintar, Finite element applications in human cervical spine modeling, Spine, 21 (15) (1996) 1824–1834.CrossRefGoogle Scholar
  38. [38]
    M. J. Fagan, S. Julian and A. M. Mohsen, Finite element analysis in spine research, Proceedings of the Institution of Mechanical Engineers, Part H: J. of Engineering in Medicine, 216 (5) (2002) 281–298.CrossRefGoogle Scholar
  39. [39]
    I. Zafarparandeh, D. U. Erbulut, I. Lazoglu and A. F. Ozer, Development of a finite element model of the human cervical spine, Turkish Neurosurgery, 24 (3) (2013) 312–318.Google Scholar
  40. [40]
    N. A. Kallemeyn, C. Tadepalli, S. K. H. Shivanna and N. M. Grosland, An interactive multiblock approach to meshing the spine, Computer Methods and Programs in Biomedicine, 95 (3) (2009) 227–235.CrossRefGoogle Scholar
  41. [41]
    M. Hussain, R. N. Natarajan, H. S. An and G. B. Andersson, Motion changes in adjacent segments due to moderate and severe degeneration in C5–C6 disc: A poroelastic C3–T1 finite element model study, Spine, 35 (9) (2010) 939–947.CrossRefGoogle Scholar
  42. [42]
    Z. J. Mo, Y. B. Zhao, L. Z. Wang, Y. Sun, M. Zhang and Y. B. Fan, Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue, European Spine J., 23 (3) (2014) 613–621.CrossRefGoogle Scholar
  43. [43]
    A. Mackiewicz, M. Banach, A. Denisiewicz and R. Bedzinski, Comparative studies of cervical spine anterior stabilization systems-Finite element analysis, Clinical Biomechanics, 32 (2016) 72–79.CrossRefGoogle Scholar
  44. [44]
    M. B. Panzer and D. S. Cronin, C4–C5 segment finite element model development, validation, and load-sharing investigation, J. of Biomechanics, 42 (4) (2009) 480–490.CrossRefGoogle Scholar
  45. [45]
    A. Laville, S. Laporte and W. Skalli, Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns, J. of Biomechanics, 42 (10) (2009) 1409–1415.CrossRefGoogle Scholar
  46. [46]
    N. M. Grosland, K. H. Shivanna, V. A. Magnotta, N. A. Kallemeyn, N. A. DeVries, S. C. Tadepalli and C. Lisle, IAFEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development, Computer Methods and Programs in Biomedicine, 94 (1) (2009) 96–107.CrossRefGoogle Scholar
  47. [47]
    W. M. Park, K. Kim and Y. H. Kim, Changes in range of motion, intradiscal pressure, and facet joint force after intervertebral disc and facet joint degeneration in the cervical spine, J. of Mechanical Science and Technology, 29 (7) (2015) 3031–3038.CrossRefGoogle Scholar
  48. [48]
    T. Xie, J. Qian, Y. Lu, B. Chen, Y. Jiang and C. Luo, Biomechanical comparison of laminectomy, hemilaminectomy and a new minimally invasive approach in the surgical treatment of multilevel cervical intradural tumour: a finite element analysis, European Spine J., 22 (12) (2013) 2719–2730.CrossRefGoogle Scholar
  49. [49]
    I. S. Han, Y. E. Kim and S. Jung, Finite element modeling of the human cervical spinal column: Role of the uncovertebral joint, J. of Mechanical Science and Technology, 26 (6) (2012) 1857–1864.CrossRefGoogle Scholar
  50. [50]
    J. H. Lee, W. M. Park, Y. H. Kim and T. A. Jahng, A biomechanical analysis of an artificial disc with a shockabsorbing core property by using whole-cervical spine finite element analysis, Spine, 41 (15) (2016) E893–E901.CrossRefGoogle Scholar
  51. [51]
    C. C. Yu, P. Liu, D. G. Huang, Y. H. Jiang, H. Feng and D. J. Hao, A new cervical artificial disc prosthesis based on physiological curvature of end plate: A finite element analysis, The Spine J., 16 (11) (2016) 1384–1391.CrossRefGoogle Scholar
  52. [52]
    R. N. Natarajan, B. H. Chen, H. S. An and G. B. Andersson, Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis, Spine, 25 (8) (2000) 955–961.CrossRefGoogle Scholar
  53. [53]
    H. Kimpara, Y. Nakahira, M. Iwamoto and K. Miki, Investigation of anteroposterior head-neck responses during severe frontal impacts using a brain-spinal cord complex FE model, Stapp Car Crash J., 50 (2006) 509.Google Scholar
  54. [54]
    T. Kameyama, Y. Hashizume and G. Sobue, Morphologic features of the normal human cadaveric spinal cord, Spine, 21 (11) (1996) 1285–1290.CrossRefGoogle Scholar
  55. [55]
    H. Y. Ko, J. H. Park, Y. B. Shin and S. Y. Baek, Gross quantitative measurements of spinal cord segments in human, Spinal Cord, 42 (1) (2004) 35–40.CrossRefGoogle Scholar
  56. [56]
    J. Holsheimer, J. A. Den Boer, J. J. Struijk and A. R. Rozeboom, MR assessment of the normal position of the spinal cord in the spinal canal, American J. of Neuroradiology, 15 (5) (1994) 951–959.Google Scholar
  57. [57]
    N. Yoganandan, S. Kumaresan and F. A. Pintar, Geometric and mechanical properties of human cervical spine ligaments, American Society of Mechanical Engineers, J. of Biomechanical Engineering, 122 (6) (2000) 623–629.CrossRefGoogle Scholar
  58. [58]
    S. F. Mattucci, J. A. Moulton, N. Chandrashekar and D. S. Cronin, Strain rate dependent properties of younger human cervical spine ligaments, J. of the Mechanical Behavior of Biomedical Materials, 10 (2012) 216–226.CrossRefGoogle Scholar
  59. [59]
    J. T. Maikos, Z. Qian, D. Metaxas and D. I. Shreiber, Finite element analysis of spinal cord injury in the rat, J. of Neurotrauma, 25 (7) (2008) 795–816.CrossRefGoogle Scholar
  60. [60]
    C. Persson, J. Summers and R. M. Hall, The importance of fluid-structure interaction in spinal trauma models, J. of Neurotrauma, 28 (1) (2011) 113–125.CrossRefGoogle Scholar
  61. [61]
    C. M. Russell, A. M. Choo, W. Tetzlaff, T. E. Chung and T. R. Oxland, Maximum principal strain correlates with spinal cord tissue damage in contusion and dislocation injuries in the rat cervical spine, J. of Neurotrauma, 29 (8) (2012) 1574–1585.CrossRefGoogle Scholar
  62. [62]
    B. Khuyagbaatar, K. Kim and Y. H. Kim, Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: A finite element study, J. of Biomechanics, 47 (11) (2014) 2820–2825.CrossRefGoogle Scholar
  63. [63]
    B. Khuyagbaatar, K. Kim and Y. H. Kim, Conversion equation between the drop height in the New York University impactor and the impact force in the infinite horizon impactor in the contusion spinal cord injury model, J. of Neurotrauma, 32 (24) (2015) 1987–1993.CrossRefGoogle Scholar
  64. [64]
    T. K. Hung, H. S. Lin, L. Bunegin and M. S. Albin, Mechanical and neurological response of cat spinal cord under static loading, Surgical Neurology, 17 (3) (1982) 213–217.CrossRefGoogle Scholar
  65. [65]
    K. Ichihara, T. Taguchi, Y. Shimada, I. Sakuramoto, S. Kawano and S. Kawai, Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter, J. of Neurotrauma, 18 (3) (2001) 361–367.CrossRefGoogle Scholar
  66. [66]
    R. J. Fiford and L. E. Bilston, The mechanical properties of rat spinal cord in vitro, J. of Biomechanics, 38 (7) (2005) 1509–1515.CrossRefGoogle Scholar
  67. [67]
    A. Singh, Y. Lu, C. Chen and J. M. Cavanaugh, Mechanical properties of spinal nerve roots subjected to tension at different strain rates, J. of Biomechanics, 39 (9) (2006) 1669–1676.CrossRefGoogle Scholar
  68. [68]
    K. Polak, M. Czyż, K. Ścigała, W. Jarmundowicz and R. Będziński, Biomechanical characteristics of the porcine denticulate ligament in different vertebral levels of the cervical spine—Preliminary results of an experimental study, J. of the Mechanical Behavior of Biomedical Materials, 34 (2014) 165–170.CrossRefGoogle Scholar
  69. [69]
    C. Persson, S. Evans, R. Marsh, J. L. Summers and R. M. Hall, Poisson’s ratio and strain rate dependency of the constitutive behavior of spinal dura mater, Annals of Biomedical Engineering, 38 (3) (2010) 975–983.CrossRefGoogle Scholar
  70. [70]
    M. M. Panjabi, J. J. Crisco, A. Vasavada, T. Oda, J. Cholewicki, K. Nibu and E. Shin, Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves, Spine, 26 (24) (2001) 2692–2700.CrossRefGoogle Scholar
  71. [71]
    J. A. Wheeldon, F. A. Pintar, S. Knowles and N. Yoganandan, Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine, J. of Biomechanics, 39 (2) (2006) 375–380.CrossRefGoogle Scholar
  72. [72]
    R. W. Nightingale, V. C. Chancey, D. Ottaviano, J. F. Luck, L. Tran, M. Prange and B. S. Myers, Flexion and extension structural properties and strengths for male cervical spine segments, J. of Biomechanics, 40 (3) (2007) 535–542.CrossRefGoogle Scholar
  73. [73]
    D. Ganbat, Y. H. Kim, K. Kim, Y. J. Jin and W. M. Park, Effect of mechanical loading on heterotopic ossification in cervical total disc replacement: A three-dimensional finite element analysis, Biomechanics and Modeling in Mechanobiology, 15 (5) (2016) 1191–1199.CrossRefGoogle Scholar
  74. [74]
    T. Mustafy, M. El-Rich, W. Mesfar and K. Moglo, Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2–C3, J. of Biomechanics, 47 (12) (2014) 2891–2903.CrossRefGoogle Scholar
  75. [75]
    C. F. Jones, S. G. Kroeker, P. A. Cripton and R. M. Hall, The effect of cerebrospinal fluid on the biomechanics of spinal cord: An ex vivo bovine model using bovine and physical surrogate spinal cord, Spine, 33 (17) (2008) E580–E588.CrossRefGoogle Scholar
  76. [76]
    C. Persson, S. W. McLure, J. Summers and R. M. Hall, The effect of bone fragment size and cerebrospinal fluid on spinal cord deformation during trauma: an ex vivo study: Laboratory investigation, J. of Neurosurgery: Spine, 10 (4) (2009) 315–323.Google Scholar
  77. [77]
    S. Kode, N. A. Kallemeyn, J. D. Smucker, D. C. Fredericks and N. M. Grosland, The effect of multi-level laminoplasty and laminectomy on the biomechanics of the cervical spine: a finite element study, The Iowa Orthopaedic J., 34 (2014) 150.Google Scholar
  78. [78]
    W. Womack, P. D. Leahy, V. V. Patel and C. M. Puttlitz, Finite element modeling of kinematic and load transmission alterations due to cervical intervertebral disc replacement, Spine, 36 (17) (2011) E1126–E1133.CrossRefGoogle Scholar
  79. [79]
    Z. Mo, Y. Zhao, C. Du, Y. Sun, M. Zhang and Y. Fan, Does location of rotation center in artificial disc affect cervical biomechanics?, Spine, 40 (8) (2015) E469–E475.CrossRefGoogle Scholar
  80. [80]
    Y. Duan, H. Zhang, S. X. Min, L. Zhang and A. M. Jin, Posterior cervical fixation following laminectomy: A stress analysis of three techniques, European Spine J., 20 (9) (2011) 1552–1559.CrossRefGoogle Scholar
  81. [81]
    H. Liu, B. Zhang, J. Lei, X. Cai, Z. Li and Z. Wang, Biomechanical role of the C1 lateral mass screws in occipitoatlantoaxial fixation: A finite element analysis, Spine, 41 (22) (2016) E1312–E1318.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yoon Hyuk Kim
    • 1
  • Batbayar Khuyagbaatar
    • 1
  • Kyungsoo Kim
    • 2
  1. 1.Department of Mechanical EngineeringKyung Hee UniversityYonginKorea
  2. 2.Department of Applied MathematicsKyung Hee UniversityYonginKorea

Personalised recommendations