Advertisement

Journal of Mechanical Science and Technology

, Volume 31, Issue 9, pp 4425–4433 | Cite as

Effects of nonlinear friction compensation in the inertia wheel pendulum

  • Carlos Aguilar-Avelar
  • Ricardo Rodríguez-Calderón
  • Sergio Puga-Guzmán
  • Javier Moreno-Valenzuela
Article

Abstract

This paper discusses for the first time the effects of modeling, identifying and compensating nonlinear friction for the control of the inertia wheel pendulum and proposes a new algorithm for the stabilization of the pendulum at the upward unstable position. First, it is shown that the dynamic model with the proposed asymmetric Coulomb friction component characterizes better the real experimental platform of the system. Then, a feedback linearization based controller with friction compensation was designed, where theoretical results show the stability of the output trajectories. Finally, the new algorithm was experimentally compared with its version without friction compensation, showing that the new scheme yields better performance with less power consumption.

Keywords

Inertia wheel pendulum Stabilization Feedback linearization Real-time experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. W. Spong, D. J. Block and K. J. Åström, The mechatronics control kit for education research, Proc. 2001 IEEE Int. Conf. on Control Applications, Mexico City, Mexico (2001) 105–110.Google Scholar
  2. [2]
    M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the reaction wheel pendulum, Automatica, 37 (11) (2001) 1845–1851.CrossRefzbMATHGoogle Scholar
  3. [3]
    J. Moreno-Valenzuela, C. Aguilar-Avelar and S. Puga-Guzmán, On trajectory tracking control of the inertia wheel pendulum, Proc. Int. Conf. on Control, Decision and Inf. Tech., Metz, France (2014) 572–577.Google Scholar
  4. [4]
    A. Owczarkowski, M. Lis and P. Kozierski, Tracking control of an inertial wheel pendulum by lqr regulation, Proc. 19th Int. Conf. on Methods and Models in Aut. and Rob., Miedzyzdroje, Poland (2014) 384–388.Google Scholar
  5. [5]
    N. Khalid and A. Y. Memon, Output feedback stabilization of an inertia wheel pendulum using sliding mode control, Proc. 2014 UKACC Int. Conf. on Control, Loughborough, UK (2014) 157–162.CrossRefGoogle Scholar
  6. [6]
    A. Zhang, C. Yang, S. Gong and J. Qiu, Nonlinear stabilizing control of underactuated inertia wheel pendulum based on coordinate transformation and time-reverse strategy, Nonlinear Dynamics, 84 (4) (2016) 2467–2476.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Huber, C. Gruber and M. Hofbaur, Online trajectory optimization for nonlinear systems by the concept of a model control loop applied to the reaction wheel pendulum, Proc. 2013 IEEE Int. Conf. on Control Applications, Hyderabad, India (2013) 935–940.CrossRefGoogle Scholar
  8. [8]
    S. Rudra, R. K. Barai, M. Maitra, D. Mandal, S. Ghosh, S. Damand P. Bhattacharya and A. Dutta, Global stabilization of a flat underactuated inertia wheel: A block backstepping approach, Proc. 2013 Int. Conf. on Computer Communication and Informatics, Coimbatore, India (2013) 1–4.Google Scholar
  9. [9]
    J. Moreno-Valenzuela, C. Aguilar-Avelar, S. Puga-Guzmán and V. Santibáñez, Two adaptive control strategies for trajectory tracking of the inertia wheel pendulum: Neural networks vis à vis model regressorm, Intelligent Automation & Soft Computing, 23 (1) (2017) 63–73.CrossRefGoogle Scholar
  10. [10]
    S. Andary, A. Chemori, M. Benoit and J. Sallantin, A dual model-free control of underactuated mechanical systems, application to the inertia wheel inverted pendulum, Proc. American Control Conference, Montreal, Canada (2012) 1029–1034.Google Scholar
  11. [11]
    B. R. Andrievsky, Global stabilization of the unstable reaction-wheel pendulum, Automation and Remote Control, 72 (9) (2011) 1981–1993.CrossRefzbMATHGoogle Scholar
  12. [12]
    K. N. Srinivasa and L. Behera, Swing-up control strategies for a reaction wheel pendulum, Int. J. of Systems Science, 39 (12) (2008) 1165–1177.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Kim, H. Kim and J. Lee, Stable control of the bicycle robot on a curved path by using a reaction wheel, J. of Mechanical Science and Technology, 29 (5) (2015) 2219–2226.CrossRefGoogle Scholar
  14. [14]
    W. S. Kang, C. K. Choi and H. H. Yoo, Stochastic modeling of friction force and vibration analysis of a mechanical system using the model, J. of Mechanical Science and Technology, 29 (9) (2015) 3645–3652.CrossRefGoogle Scholar
  15. [15]
    H. Olsson, K. J. Åström, C. Canudas de Wit, M. Gäfvert and P. Lischinsky, Friction models and friction compensation, European J. of Control, 4 (3) (1998) 176–195.CrossRefzbMATHGoogle Scholar
  16. [16]
    S. Sánchez-Mazuca, I. Soto and R. Campa, Modeling and control of a pendubot with static friction, M. Ceccarelli, E. Hernández Martinez (Eds), Multibody Mechatronic Systems, Springer, Cham (2014) 229–240.Google Scholar
  17. [17]
    J. Sandoval, R. Kelly and V. Santibáñez, Interconnection and damping assignment passivity-based control of a class of underactuated mechanical systems with dynamic friction, International J. of Robust and Nonlinear Control, 21 (7) (2011) 738–751.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    I. Fantoni and R. Lozano, Non-linear Control for Underactuated Mechanical Systems, Springer-Verlag, London (2002).CrossRefGoogle Scholar
  19. [19]
    R. Kelly and J. Llamas, Determination of viscous and coulomb friction by using velocity responses to torque ramp inputs, Proc. 1999 IEEE Int. Conf. on Robotics and Automation, Detroit, USA (1999) 1740–1745.Google Scholar
  20. [20]
    W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, 3rd Ed., Taylor & Francis, Bristol (2002).zbMATHGoogle Scholar
  21. [21]
    M. Gautier and Ph. Poignet, Extended Kalman filtering and weighted least squares dynamic identification of robot, Control Engineering Practice, 9 (12) (2001) 1361–1372.CrossRefGoogle Scholar
  22. [22]
    P. Logothetis and J. Kieffer, On the identification of the robot dynamics without acceleration measurements, Internal report, Faculty of Engineering and Information Technology, Australian National University (1996) http://citeseerx.ist.psu. edu/viewdoc/summary?doi=10.1.1.55.8716.Google Scholar
  23. [23]
    J. Moreno-Valenzuela and C. Aguilar-Avelar, Motion Control of Underactuated Mechanical Systems, Springer International Publishing, Cham (2018).CrossRefGoogle Scholar
  24. [24]
    J. Moreno-Valenzuela, R. Miranda-Colorado and C. Aguilar-Avelar, A MATLAB-based identification procedure applied to a two-degrees-of-freedom robot manipulator for engineering students, International J. of Electrical Engineering Education, In press, Online preview (2017) http://dx.doi.org/10.1177/0020720916689102.Google Scholar
  25. [25]
    H. K. Khalil, Nonlinear Systems, 2nd Ed., Prentice Hall, Upper Saddle River (1996).Google Scholar
  26. [26]
    J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Entice Hall, New Jersey (1991).zbMATHGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Carlos Aguilar-Avelar
    • 1
  • Ricardo Rodríguez-Calderón
    • 1
  • Sergio Puga-Guzmán
    • 2
  • Javier Moreno-Valenzuela
    • 1
  1. 1.Instituto Politécnico Nacional-CITEDITijuanaMéxico
  2. 2.Tecnológico Nacional del MéxicoInstituto Tecnológico de TijuanaTijuanaMéxico

Personalised recommendations